888 resultados para Nonlinear terms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work summarizes the HdHr group of Hermitian integration algorithms for dynamic structural analysis applications. It proposes a procedure for their use when nonlinear terms are present in the equilibrium equation. The simple pendulum problem is solved as a first example and the numerical results are discussed. Directions to be pursued in future research are also mentioned. Copyright (C) 2009 H.M. Bottura and A. C. Rigitano.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare collisions of a classical particle bouncing between two walls are studied. The dynamics is described by a two-dimensional, nonlinear and area-preserving mapping in the variables velocity and time at the instant that the particle collides with the moving wall. The phase space is of mixed type preventing diffusion of the particle to high energy. Successive and therefore rare collisions are shown to have a histogram of frequency which is scaling invariant with respect to the control parameters. The saddle fixed points are studied and shown to be scaling invariant with respect to the control parameters too. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work gives sufficient conditions for the solvability of the fourth order coupled system┊ u⁽⁴⁾(t)=f(t,u(t),u′(t),u′′(t),u′′′(t),v(t),v′(t),v′′(t),v′′′(t)) v⁽⁴⁾(t)=h(t,u(t),u′(t),u′′(t),u′′′(t),v(t),v′(t),v′′(t),v′′′(t)) with f,h: [0,1]×ℝ⁸→ℝ some L¹- Carathéodory functions, and the boundary conditions {┊ u(0)=u′(0)=u′′(0)=u′′(1)=0 v(0)=v′(0)=v′′(0)=v′′(1)=0. To the best of our knowledge, it is the first time in the literature where two beam equations are considered with full nonlinearities, that is, with dependence on all derivatives of u and v. An application to the study of the bending of two elastic coupled campled beams is considered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the propagation of perturbations in the quark gluon plasma. This subject has been addressed in other works and in most of the theoretical descriptions of this phenomenon the hydrodynamic equations have been linearized for simplicity. We propose an alternative approach, also based on hydrodynamics but taking into account the nonlinear terms of the equations. We show that these terms may lead to localized waves or even solitons. We use a simple equation of state for the QGP and expand the hydrodynamic equations around equilibrium configurations. The resulting differential equations describe the propagation of perturbations in the energy density. We solve them numerically and find that localized perturbations can propagate for long distances in the plasma. Under certain conditions our solutions mimic the propagation of Korteweg-de Vries solitons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nonlinear effects on the early stage of phase ordering are studied using Adomian's decomposition method for the Ginzburg-Landau equation for a nonconserved order parameter. While the long-time regime and the linear behavior at short times of the theory are well understood, the onset of nonlinearities at short times and the breaking of the linear theory at different length scales are less understood. In the Adomians decomposition method, the solution is systematically calculated in the form of a polynomial expansion for the order parameter, with a time dependence given as a series expansion. The method is very accurate for short times, which allows to incorporate the short-time dynamics of the nonlinear terms in a analytical and controllable way. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we study the generic hyperbolicity of equilibria of a reaction-diffusion system with respect to nonlinear terms in the set of C(2)-functions equipped with the Whitney Topology. To accomplish this, we combine Baire`s Lemma and the usual Transversality Theorem. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high-order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier-Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity-velocity formulation for a two-dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high-order compact and non-compact finite-differences from fourth-order to sixth-order of accuracy. The other scheme used spectral methods instead of finite-difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed-order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transmission and switching in digital telecommunication networks require distribution of precise time signals among the nodes. Commercial systems usually adopt a master-slave (MS) clock distribution strategy building slave nodes with phase-locked loop (PLL) circuits. PLLs are responsible for synchronizing their local oscillations with signals from master nodes, providing reliable clocks in all nodes. The dynamics of a PLL is described by an ordinary nonlinear differential equation, with order one plus the order of its internal linear low-pass filter. Second-order loops are commonly used because their synchronous state is asymptotically stable and the lock-in range and design parameters are expressed by a linear equivalent system [Gardner FM. Phaselock techniques. New York: John Wiley & Sons: 1979]. In spite of being simple and robust, second-order PLLs frequently present double-frequency terms in PD output and it is very difficult to adapt a first-order filter in order to cut off these components [Piqueira JRC, Monteiro LHA. Considering second-harmonic terms in the operation of the phase detector for second order phase-locked loop. IEEE Trans Circuits Syst [2003;50(6):805-9; Piqueira JRC, Monteiro LHA. All-pole phase-locked loops: calculating lock-in range by using Evan`s root-locus. Int J Control 2006;79(7):822-9]. Consequently, higher-order filters are used, resulting in nonlinear loops with order greater than 2. Such systems, due to high order and nonlinear terms, depending on parameters combinations, can present some undesirable behaviors, resulting from bifurcations, as error oscillation and chaos, decreasing synchronization ranges. In this work, we consider a second-order Sallen-Key loop filter [van Valkenburg ME. Analog filter design. New York: Holt, Rinehart & Winston; 1982] implying a third order PLL The resulting lock-in range of the third-order PLL is determined by two bifurcation conditions: a saddle-node and a Hopf. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A dynamic recurrent neural network (DRNN) that can be viewed as a generalisation of the Hopfield neural network is proposed to identify and control a class of control affine systems. In this approach, the identified network is used in the context of the differential geometric control to synthesise a state feedback that cancels the nonlinear terms of the plant yielding a linear plant which can then be controlled using a standard PID controller.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A dynamic recurrent neural network (DRNN) is used to input/output linearize a control affine system in the globally linearizing control (GLC) structure. The network is trained as a part of a closed loop that involves a PI controller, the goal is to use the network, as a dynamic feedback, to cancel the nonlinear terms of the plant. The stability of the configuration is guarantee if the network and the plant are asymptotically stable and the linearizing input is bounded.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate several diffusion equations which extend the usual one by considering the presence of nonlinear terms or a memory effect on the diffusive term. We also considered a spatial time dependent diffusion coefficient. For these equations we have obtained a new classes of solutions and studied the connection of them with the anomalous diffusion process. We start by considering a nonlinear diffusion equation with a spatial time dependent diffusion coefficient. The solutions obtained for this case generalize the usual one and can be expressed in terms of the q-exponential and q-logarithm functions present in the generalized thermostatistics context (Tsallis formalism). After, a nonlinear external force is considered. For this case the solutions can be also expressed in terms of the q-exponential and q-logarithm functions. However, by a suitable choice of the nonlinear external force, we may have an exponential behavior, suggesting a connection with standard thermostatistics. This fact reveals that these solutions may present an anomalous relaxation process and then, reach an equilibrium state of the kind Boltzmann- Gibbs. Next, we investigate a nonmarkovian linear diffusion equation that presents a kernel leading to the anomalous diffusive process. Particularly, our first choice leads to both a the usual behavior and anomalous behavior obtained through a fractionalderivative equation. The results obtained, within this context, correspond to a change in the waiting-time distribution for jumps in the formalism of random walks. These modifications had direct influence in the solutions, that turned out to be expressed in terms of the Mittag-Leffler or H of Fox functions. In this way, the second moment associated to these distributions led to an anomalous spread of the distribution, in contrast to the usual situation where one finds a linear increase with time

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetic order of bylayers composed by a ferromagnetic film (F) coupled with an antiferromagnetic film (AF) is studied. Piles of coupled monolayers describe the films and the interfilm coupling is described by an exchange interaction between the magnetic moments at the interface. The F has a cubic anisotropy while the AF has a uniaxial anisotropy. We analyze the effects of an external do magnetic field applied parallel to the interface. We consider the intralayer coupling is strong enough to keep parallel all moments of the monolayer an then they are described by one vector proportional to the magnetization of the layer. The interlayer coupling is represented by an exchange interaction between these vectors. The magnetic energy of the system is the sum of the exchange. Anisotropy and Zeeman energies and the equilibrium configuration is one that gives the absolute minimum of the total energy. The magnetization of the system is calculated and the influence of the external do field combined with the interfilm coupling and the unidirectional anisotropy is studied. Special attention is given to the region near of the transition fields. The torque equation is used to study dynamical behavior of these systems. We consider small oscillations around the equilibrium position and we negleet nonlinear terms to obtain the natural frequencies of the system. The dependence of the frequencies with the external do field and their behavior in the phase transition region is analized

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we present a mathematical and computational modeling of electrokinetic phenomena in electrically charged porous medium. We consider the porous medium composed of three different scales (nanoscopic, microscopic and macroscopic). On the microscopic scale the domain is composed by a porous matrix and a solid phase. The pores are filled with an aqueous phase consisting of ionic solutes fully diluted, and the solid matrix consists of electrically charged particles. Initially we present the mathematical model that governs the electrical double layer in order to quantify the electric potential, electric charge density, ion adsorption and chemical adsorption in nanoscopic scale. Then, we derive the microscopic model, where the adsorption of ions due to the electric double layer and the reactions of protonation/ deprotanaç~ao and zeta potential obtained in modeling nanoscopic arise in microscopic scale through interface conditions in the problem of Stokes and Nerst-Planck equations respectively governing the movement of the aqueous solution and transport of ions. We developed the process of upscaling the problem nano/microscopic using the homogenization technique of periodic structures by deducing the macroscopic model with their respectives cell problems for effective parameters of the macroscopic equations. Considering a clayey porous medium consisting of kaolinite clay plates distributed parallel, we rewrite the macroscopic model in a one-dimensional version. Finally, using a sequential algorithm, we discretize the macroscopic model via the finite element method, along with the interactive method of Picard for the nonlinear terms. Numerical simulations on transient regime with variable pH in one-dimensional case are obtained, aiming computational modeling of the electroremediation process of clay soils contaminated