949 resultados para Mouse gonad cell lines
Resumo:
To facilitate the study of the regulation and downstream interactions of genes involved in gonad development it is important to have a suitable cell culture model. We therefore aimed to characterize molecularly three different mouse gonad cell lines. TM3 and TM4 cells were originally isolated from prepubertal mouse gonads and were tentatively identified as being of Leydig cell and Sertoli cell origin, respectively, based upon their morphology and hormonal responses. The third line is a conditionally immortalized cell line, derived from 10.5-11.5 days post-coitum (dpc) male gonads of transgenic embryos carrying a temperature-sensitive SV40 large T-antigen. We studied by reverse transcription-polymerase chain reaction (RT-PCR) the expression profiles of a number of genes known to be important for early gonad development. Moreover, we assessed these cell lines for their capacity to induce Sox9 transcription upon expression of Sry, a key molecular event occurring during sex determination. We found that all three cell lines were unable to upregulate Sox9 expression upon transfection of Sry-expression constructs, even though these cells express many of the studied embryonic gonad genes. These observations point to a requirement for SRY cofactors for direct or indirect upregulation of Sox9 expression during testis determination. Copyright © 2003 S. Karger AG, Basel
Fas-FasL expression and interactions in mouse tumor cell lines: Implications for tumor immune escape
Resumo:
The Fas system, comprising the Fas receptor (Fas/Apo-1/CD95) and its ligand, Fas ligand (FasL), is a central mediator of programmed cell death in various physiological and pathological processes. FasL exists as transmembrane and soluble forms and induces apoptosis on crosslinking with Fas receptor. Recent evidence indicated that tumor cells exploit this system for their immunologic escape that includes the loss of Fas and the gain of FasL expression. In the present study, nine mouse tumor cell lines of diverse origin were examined immunocytochemically for the expression of Fas and FasL. Nine of nine cell lines expressed FasL, and five of nine cell lines expressed Fas. FasL expression in these tumor cell lines was demonstrated to be functional by its induction of apoptosis in Fas-sensitive target cells in coculture experiments. These results suggest that FasL may be a prevalent mediator of immune privilege in mouse malignancies, and support the recently proposed "counterattack model" for local elimination of tumor-reactive immune cells by tumor cell-derived FasL.^ Culture supernatant of four cell lines expressing FasL showed cytotoxic effect on Fas-sensitive target cells, indicating the possibility of secreted FasL in the medium. The Fas-expressing cell lines were sensitized to anti-Fas antibody cytotoxicity following treatment with IL-2 and IFN-$\gamma$, suggesting cytokine stimulation as an effective target for future immunotherapeutic strategies. ^
The effect of porphyrins on normal and transformed mouse cell lines in the presence of visible light
Resumo:
Photodynamic therapy consists of the uptake of a photosensitizing dye, often a porphyrin, by tumor tissue and subsequent irradiation of the tumor with visible light of an appropriate wavelength matched to the absorption spectrum of the photosensitizing dye. This class of molecules produces reactive oxygen species when activated by light, resulting in a direct or indirect cytotoxic effect on the target cells. Photodynamic therapy has been used in the treatment of cancer but the technology has a potential for the treatment of several disease conditions mainly because of its selectivity. However, it is not clear why the porphyrins are retained preferentially by abnormal tissue. This paper describes a study of the effect of the association of porphyrin and visible light on two mouse fibroblast cell lines: A31, normal cells and B61, an EJ-ras transformed variant of A31. Two water-soluble porphyrins were used, a positively charged one, tetra(N-methyl-4-pyridyl)porphyrin chloride, and a negatively charged one, tetra(4-sulfonatophenyl)porphyrin-Na salt (TPPS4) in order to assess the effect on cell survival. The results suggest that the B61 cell line is more sensitive to incubation with the anionic porphyrin (TPPS4) followed by light irradiation and that the anionic porphyrin is more efficient in killing the cells than the cationic porphyrin.
Resumo:
Embryonic stem cells are totipotent cells derived from the inner cell mass of blastocysts. Recently, the development of appropriate culture conditions for the differentiation of these cells into specific cell types has permitted their use as potential therapeutic agents for several diseases. In addition, manipulation of their genome in vitro allows the creation of animal models of human genetic diseases and for the study of gene function in vivo. We report the establishment of new lines of murine embryonic stem cells from preimplantation stage embryos of 129/Sv mice. Most of these cells had a normal karyotype and an XY sex chromosome composition. The pluripotent properties of the cell lines obtained were analyzed on the basis of their alkaline phosphatase activity and their capacity to form complex embryoid bodies with rhythmically contracting cardiomyocytes. Two lines, USP-1 and USP-3, with the best in vitro characteristics of pluripotency were used in chimera-generating experiments. The capacity to contribute to the germ line was demonstrated by the USP-1 cell line. This cell line is currently being used to generate mouse models of human diseases.
Resumo:
Background: Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. Methods: B16 (mouse melanoma) and C6 (rat glioma) cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Results: Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet p53 was further activated by the combination of p19Arf and nutlin-3. Conclusions: To the best of our knowledge, this is the first study to apply both p19Arf and nutlin-3 for the stimulation of p53 activity. These results support the notion that a p53 responsive vector may prove to be an interesting gene transfer tool, especially when combined with p53- activating agents, for the treatment of tumors that retain wild-type p53.
Resumo:
Oral squamous cell carcinoma (OSCC) may arise from potentially malignant oral lesions. All-trans retinoic acid (atRA), which plays a role in cell growth and differentiation, has been studied as a possible chemotherapeutic agent in the prevention of this progression. While the mechanism by which atRA suppresses cell growth has not been completely elucidated, it is known that homeobox genes are atRA targets. To determine if these genes are involved in the atRA-mediated OSCC growth inhibition, PCR array was performed to evaluate the expression of 84 homeobox genes in atRA-sensitive SCC-25 cells compared to atRA-resistant SCC-9 cells following 7 days with atRA treatment. Results showed that the expression of 8 homeobox genes was downregulated and expression of 4 was upregulated in SCC-25 cells but not in SCC-9 cells. Gene expression levels were confirmed for seven of these genes by RT-qPCR. Expression of three genes that showed threefold downregulation was evaluated in SCC-25 cells treated with atRA for 3, 5, and 7 days. Three different patterns of atRA-dependent gene expression were observed. ALX1 showed downregulation only on day 7. DLX3 showed reduced expression on day 3 and further reduced on clay 7. TLX1 showed downregulation only on days 5 and 7. Clearly the expression of homeobox genes is modulated by atRA in OSCC cell lines. However, the time course of this modulation suggests that these genes are not direct targets of atRA mediating OSCC growth suppression. Instead they appear to act as downstream effectors of atRA signaling. J. Cell. Biochem. 111: 1437-1444, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Monocyte macrophages (M phi) are thought to be the principal target cells for the dengue viruses (DV), the cause of dengue fever and hemorrhagic fever. Cell attachment is mediated by the virus envelope (E) protein, but the host-cell receptors remain elusive. Currently, candidate receptor molecules include proteins, Fc receptors, glycosaminoglycans (GAGs) and lipopolysaccharide binding CD14-associated molecules. Here, we show that in addition to M phi, cells of the T- and B-cell lineages, and including cells lacking GAGs, can bind and become infected with DV. The level of virus binding varied widely between cell lines and, notably, between virus strains within a DV serotype. The latter difference may be ascribable to one or more amino acid differences in domain II of the E protein. Heparin had no significant effect on DV binding, while heparinase treatment of cells in all cases increased DV binding, further supporting the contention that GAGs are not required for DV binding and infection of human cells. In contrast to a recent report, we found that lipopolysaccharide (LPS) had either no effect or enhanced DV binding to, and infection of various human leukocyte cell lines, while in all virus-cell combinations, depletion of Ca2+/Mg2+ enhanced DV binding. This argues against involvement of beta (2) integrins in virus-host cell interactions, a conclusion in accord with the demonstration of three virus binding membrane proteins of < 75 kDa. Collectively, the results of this study question the purported exclusive importance of the E protein domain III in DV binding to host cells and point to a far more complex interaction between various target cells and, notably, individual DV strains. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) is a central signal for interleukin-1beta (IL-1beta)-induced apoptosis in insulin-producing beta-cells. The cell-permeable peptide inhibitor of JNK (JNKI1), that introduces the JNK binding domain (JBD) of the scaffold protein islet-brain 1 (IB1) inside cells, effectively prevents beta-cell death caused by this cytokine. To define the molecular targets of JNK involved in cytokine-induced beta-cell apoptosis we investigated whether JNKI1 or stable expression of JBD affected the expression of selected pro- and anti-apoptotic genes induced in rat (RIN-5AH-T2B) and mouse (betaTC3) insulinoma cells exposed to IL-1beta. Inhibition of JNK significantly reduced phosphorylation of the specific JNK substrate c-Jun (p<0.05), IL-1beta-induced apoptosis (p<0.001), and IL-1beta-mediated c-fos gene expression. However, neither JNKI1 nor JBD did influence IL-1beta-induced NO synthesis or iNOS expression or the transcription of the genes encoding mitochondrial manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase rho (GSTrho), heat shock protein (HSP) 70, IL-1beta-converting enzyme (ICE), caspase-3, apoptosis-inducing factor (AIF), Bcl-2 or Bcl-xL. We suggest that the anti-apoptotic effect of JNK inhibition by JBD is independent of the transcription of major pro- and anti-apoptotic genes, but may be exerted at the translational or posttranslational level.
Resumo:
Spleen cells from mice immunized with purified carcinoembryonic antigen (CEA), an important tumor marker of human carcinomas, were fused with the mouse myeloma cell line P3-NSI/1-Ag4. Out of the 400 hybrids obtained, 2 secreted antibodies reacting specifically with two different antigenic determinants present on CEA molecules. They were cloned and established as permanent hybridoma cell lines. These antibodies, which have relatively high-affinities and can be produced in unlimited amounts, will be useful both for the immunochemical characterization of CEA and as a standard reagent for the identification of this antigen in human tissues and body fluids.
Resumo:
La leucémie aiguë lymphoblastique (LAL) est le cancer pédiatrique le plus fréquent. Elle est la cause principale de mortalité liée au cancer chez les enfants due à un groupe de patient ne répondant pas au traitement. Les patients peuvent aussi souffrir de plusieurs toxicités associées à un traitement intensif de chimiothérapie. Les études en pharmacogénétique de notre groupe ont montré une corrélation tant individuelle que combinée entre les variants génétiques particuliers d’enzymes dépendantes du folate, particulièrement la dihydrofolate réductase (DHFR) ainsi que la thymidylate synthase (TS), principales cibles du méthotrexate (MTX) et le risque élevé de rechute chez les patients atteints de la LAL. En outre, des variations dans le gène ATF5 impliqué dans la régulation de l’asparagine synthetase (ASNS) sont associées à un risque plus élevé de rechute ou à une toxicité ASNase dépendante chez les patients ayant reçu de l’asparaginase d’E.coli (ASNase). Le but principal de mon projet de thèse est de comprendre davantage d’un point de vue fonctionnel, le rôle de variations génétiques dans la réponse thérapeutique chez les patients atteints de la LAL, en se concentrant sur deux composants majeurs du traitement de la LAL soit le MTX ainsi que l’ASNase. Mon objectif spécifique était d’analyser une association trouvée dans des paramètres cliniques par le biais d’essais de prolifération cellulaire de lignées cellulaires lymphoblastoïdes (LCLs, n=93) et d’un modèle murin de xénogreffe de la LAL. Une variation génétique dans le polymorphisme TS (homozygosité de l’allèle de la répétition triple 3R) ainsi que l’haplotype *1b de DHFR (défini par une combinaison particulière d’allèle dérivé de six sites polymorphiques dans le promoteur majeur et mineur de DHFR) et de leurs effets sur la sensibilité au MTX ont été évalués par le biais d’essais de prolifération cellulaire. Des essais in vitro similaires sur la réponse à l’ASNase de E. Coli ont permis d’évaluer l’effet de la variation T1562C de la région 5’UTR de ATF5 ainsi que des haplotypes particuliers du gène ASNS (définis par deux variations génétiques et arbitrairement appelés haplotype *1). Le modèle murin de xénogreffe ont été utilisé pour évaluer l’effet du génotype 3R3R du gène TS. L’analyse de polymorphismes additionnels dans le gène ASNS a révélé une diversification de l’haplotype *1 en 5 sous-types définis par deux polymorphismes (rs10486009 et rs6971012,) et corrélé avec la sensibilité in vitro à l’ASNase et l’un d’eux (rs10486009) semble particulièrement important dans la réduction de la sensibilité in vitro à l’ASNase, pouvant expliquer une sensibilité réduite de l’haplotype *1 dans des paramètres cliniques. Aucune association entre ATF5 T1562C et des essais de prolifération cellulaire en réponse à ASNase de E.Coli n’a été détectée. Nous n’avons pas détecté une association liée au génotype lors d’analyse in vitro de sensibilité au MTX. Par contre, des résultats in vivo issus de modèle murin de xénogreffe ont montré une relation entre le génotype TS 3R/3R et la résistance de manière dose-dépendante au traitement par MTX. Les résultats obtenus ont permis de fournir une explication concernant un haut risque significatif de rechute rencontré chez les patients au génotype TS 3R/3R et suggèrent que ces patients pourraient recevoir une augmentation de leur dose de MTX. À travers ces expériences, nous avons aussi démontré que les modèles murins de xénogreffe peuvent servir comme outil préclinique afin d’explorer l’option d’un traitement individualisé. En conclusion, la connaissance acquise à travers mon projet de thèse a permis de confirmer et/ou d’identifier quelques variants dans la voix d’action du MTX et de l’ASNase qui pourraient faciliter la mise en place de stratégies d’individualisation de la dose, permettant la sélection d’un traitement optimum ou moduler la thérapie basé sur la génétique individuelle.
Resumo:
Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEIC293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the PI position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells.
Resumo:
Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1 and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using immunohistochemical staining of the primary tumor, cultured cells and xenografts implanted in immunodeficient mice. We also investigated the ability of the cell lines to form colonies and copy number alterations by array comparative genomic hybridization. Histopathological analysis showed that the invasive primary tumor from which the MACL-1 cell line was derived, was a luminal A subtype carcinoma, while the ductal carcinoma in situ (DCIS) that gave rise to the MGSO-3 cell line was a HER2 subtype tumor, both showing different proliferation levels. The cell lines and the tumor xenografts in mice preserved their high proliferative potential, but did not maintain the expression of the other markers assessed. This shift in expression may be due to the selection of an 'establishment' phenotype in vitro. Whole-genome DNA evaluation showed a large amount of copy number alterations (CNAs) in the two cell lines. These findings render MACL-1 and MGSO-3 the first characterized Brazilian breast cancer cell lines to be potentially used for comparative research. © 2013 Spandidos Publications Ltd. All rights reserved.
Resumo:
The recently emerged concept of cancer stem cell (CSC) has led to a new hypothesis on the basis for tumor progression. Basically, the CSC theory hypothesizes the presence of a hierarchically organized and relatively rare cell population, which is responsible for tumor initiation, self-renewal, and maintenance, in addition to accumulation of mutation and resistance to chemotherapy. CSCs have recently been described in breast cancer. Different genetic markers have been used to isolate breast CSCs, none of which have been correlated with the tumorigenicity or metastatic potential of the cells, limiting their precise characterization and clinical application in the development of therapeutic protocols. Here, we sought for subpopulations of CSCs by analyzing 10 judiciously chosen stem cell markers in a normal breast cell line (MCF10-A) and in four human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-435, and Hs578-T) displaying different degrees of metastatic and invasiveness potential. We were able to identify two markers, which are differentially expressed in nontumorigenic versus tumor cells. The CD90 marker was highly expressed in the malignant cell lines. Interestingly, the CD14 molecule displayed higher expression levels in the nontumorigenic cell line. Therefore, we demonstrated that these two markers, which are more commonly used to isolate and characterize stem cells, are differentially expressed in breast tumor cells, when compared with nontumorigenic breast cells. (C) 2012 International Society for Advancement of Cytometry
Resumo:
Mouse cell lines were immortalized by introduction of specific immortalizing genes. Embryonic and adult animals and an embryonal stem cell line were used as a source of primary cells. The immortalizing genes were either introduced by DNA transfection or by ecotropic retrovirus transduction. Fibroblasts were obtained by expression of SV40 virus large T antigen (TAg). The properties of the resulting fibroblast cell lines were reproducible, independent of the donor mouse strains employed and the cells showed no transformed properties in vitro and did not form tumors in vivo. Endothelial cell lines were generated by Polyoma virus middle T antigen expression in primary embryonal cells. These cell lines consistently expressed relevant endothelial cell surface markers. Since the expression of the immortalizing genes was expected to strongly influence the cellular characteristics fibroblastoid cells were reversibly immortalized by using a vector that allows conditional expression of the TAg. Under inducing conditions, these cells exhibited properties that were highly similar to the properties of constitutively immortalized cells. In the absence of TAg expression, cell proliferation stops. Cell growth is resumed when TAg expression is restored. Gene expression profiling indicates that TAg influences the expression levels of more than 1000 genes that are involved in diverse cellular processes. The data show that conditionally immortalized cell lines have several advantageous properties over constitutively immortalized cells.
Resumo:
OBJECT: The aim of this study was to develop and characterize a new orthotopic, syngeneic, transplantable mouse brain tumor model by using the cell lines Tu-9648 and Tu-2449, which were previously isolated from tumors that arose spontaneously in glial fibrillary acidic protein (GFAP)-v-src transgenic mice. METHODS: Striatal implantation of a 1-microl suspension of 5000 to 10,000 cells from either clone into syngeneic B6C3F1 mice resulted in tumors that were histologically identified as malignant gliomas. Prior subcutaneous inoculations with irradiated autologous cells inhibited the otherwise robust development of a microscopically infiltrating malignant glioma. Untreated mice with implanted tumor cells were killed 12 days later, when the resultant gliomas were several millimeters in diameter. Immunohistochemically, the gliomas displayed both the astroglial marker GFAP and the oncogenic form of signal transducer and activator of transcription-3 (Stat3). This form is called tyrosine-705 phosphorylated Stat3, and is found in many malignant entities, including human gliomas. Phosphorylated Stat3 was particularly prominent, not only in the nucleus but also in the plasma membrane of peripherally infiltrating glioma cells, reflecting persistent overactivation of the Janus kinase/Stat3 signal transduction pathway. The Tu-2449 cells exhibited three non-random structural chromosomal aberrations, including a deletion of the long arm of chromosome 2 and an apparently balanced translocation between chromosomes 1 and 3. The GFAP-v-src transgene was mapped to the pericentromeric region of chromosome 18. CONCLUSIONS: The high rate of engraftment, the similarity to the high-grade malignant glioma of origin, and the rapid, locally invasive growth of these tumors should make this murine model useful in testing novel therapies for human malignant gliomas.