854 resultados para Mathematical conceptions
Resumo:
This study provides support to the characteristics of participatory and anticipatory stages in secondary school pupils’ abstraction of mathematical conceptions. We carried out clinical task-based interviews with 71 secondary-school pupils to obtain evidence of the different constructed mathematical conceptions (Participatory Stage) and how they were used (Anticipatory Stage). We distinguish two moments in the Participatory Stage based on the coordination of information from particular cases by activity-effect reflection which, in some cases, lead to a change of focus enabling secondary-school pupils to achieve a reorganization of their knowledge. We argue that (a) the capacity of perceiving regularities in sets of particular cases is a characteristic of activity-effect reflection in the abstraction of mathematical conceptions in secondary school, and (b) the coordination of information by pupils provides opportunities for changing the attention-focus from the particular results to the structure of properties.
Resumo:
A investigação em curso visa compreender a influência da implementação de um conjunto de tarefas no desenvolvimento do conceito de ângulo em alunos do 5.º ano de escolaridade, procurando responder às seguintes questões: a) Que conceções revelam alunos do 5.º ano de escolaridade relativamente ao conceito de ângulo?; b) Que estratégias utilizam os alunos do 5.º ano de escolaridade na exploração das tarefas utilizadas?; e c) Que aspetos do conceito de ângulo são desenvolvidos pelos alunos através da realização das tarefas propostas? A presente comunicação incide na primeira questão do estudo. Optou-se por uma abordagem metodológica qualitativa de paradigma interpretativo com a modalidade de experiência de ensino. Selecionou-se quatro alunos para constituir o grupo-alvo. Procedeu-se à avaliação diagnóstica das conceções de ângulo dos quatro alunos através da realização, no 1.º Período do ano letivo de 2011/12, de entrevistas clínicas semiestruturadas individuais, gravadas em vídeo. Além das entrevistas, foram usadas, como técnicas de recolha de dados, a observação participante das aulas, videogravadas, bem como a análise de documentos. Para analisar os dados, foram elaboradas categorias analíticas. Os resultados relativos à avaliação diagnóstica evidenciam conceções erradas de ângulo e respetiva amplitude: (a) os ângulos são os lados de polígonos (1 aluna); (b) o comprimento dos segmentos representativos dos lados está relacionado com o tamanho dos ângulos (2 alunos); (c) o comprimento do arco marcando o ângulo está relacionado com o tamanho dos ângulos (3 alunos); (d) nos polígonos côncavos, sãoângulos apenas os de amplitude inferior a 1800 (3 alunos); (e) em figuras que não são polígonos, os ângulos são os espaços entre os segmentos de reta e as linhas curvas (1 aluno); (f) o ângulo é a área entre dois segmentos representativos dos lados (4 alunos); e (g) os ângulos retos são apenas os posicionados na posição usual horizontal/vertical (1 aluna).
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
This study looks at how upper secondary school teachers gender stereotype aspects of students' mathematical reasoning. Girls were attributed gender symbols including insecurity, use of standard methods and imitative reasoning. Boys were assigned the symbols such as multiple strategies especially on the calculator, guessing and chance-taking.
Resumo:
In connection with the (revived) demand for considering applications in the teaching of mathematics, various schemata or lists of criteria have been developed since the end of the sixties, which set up requirements about closeness to the real world or about the type of mathematics being used, and which have made it possible to analyze the available applications in their light. After having stated the problem (in section 1), we present (in section 2) a sketch of some of the best known of these and of some earlier schemata, although we are not aiming for a complete picture. Then (in section 3) we distinguish among different dimensions.in the analysis of applications. With this as a basis, we develop (in section 4) our own suggestion for categorizing types of applications and conceptions for an application-oriented mathematics instruction. Then (in section 5) we illustrate our schemata by some examples of performed evaluations. Finally (in section 6), we present some preliminary first results of the analysis of teaching conceptions.
Resumo:
This article describes an intervention process undertaken in a training program for preschool and first grade teachers from public schools in Cali, Colombia. The objective of this process is to provide a space for teachers to reflect on pedagogical practices which allow them to generate educational processes that foster children’s understanding of mathematical knowledge in the classroom. A set of support strategies was presented for helping teachers in the design, analysis and implementation of learning environments as meaningful educational spaces. Furthermore, participants engaged in an analysis of their own intervention modalities to identify which modalities facilitate the development of mathematical abilities in children. In order to ascertain the transformations in the teachers’ learning environments, the mathematical competences and cognitive processes underlying the activities proposed in the classroom, as well as teacher intervention modalities and the types of student participation in classroom activities were examined both before and after the intervention process. Transformations in the teachers’ conceptions about the children’s abilities and their own practices in teaching mathematics in the classroom were evidenced.
Resumo:
This thesis explores two aspects of mathematical reasoning: affect and gender. I started by looking at the reasoning of upper secondary students when solving tasks. This work revealed that when not guided by an interviewer, algorithmic reasoning, based on memorising algorithms which may or may not be appropriate for the task, was predominant in the students reasoning. Given this lack of mathematical grounding in students reasoning I looked in a second study at what grounds they had for different strategy choices and conclusions. This qualitative study suggested that beliefs about safety, expectation and motivation were important in the central decisions made during task solving. But are reasoning and beliefs gendered? The third study explored upper secondary school teachers conceptions about gender and students mathematical reasoning. In this study I found that upper secondary school teachers attributed gender symbols including insecurity, use of standard methods and imitative reasoning to girls and symbols such as multiple strategies especially on the calculator, guessing and chance-taking were assigned to boys. In the fourth and final study I found that students, both male and female, shared their teachers view of rather traditional feminities and masculinities. Remarkably however, this result did not repeat itself when students were asked to reflect on their own behaviour: there were some discrepancies between the traits the students ascribed as gender different and the traits they ascribed to themselves. Taken together the thesis suggests that, contrary to conceptions, girls and boys share many of the same core beliefs about mathematics, but much work is still needed if we should create learning environments that provide better opportunities for students to develop beliefs that guide them towards well-grounded mathematical reasoning.
Resumo:
This paper deals with younger students’ (grade 2 and 5) conceptions about mathematics and mathematics education. The questionnaire consisted of three parts: (1) statements with a Likert-scale; (2) open-end questions where the students could explain further their conceptions; and, (3) a request to draw a picture of yourself doing mathematics. The results from the statements were summarised and the pictures were analysed. Most students in grade 2 had a positive attitude towards mathematics whereas a larger proportion in grade 5 gave negative answers. All students presented mathematics as an individual activity with a focus on the textbook. The elder students narrow the activity down to calculating. A post-questionnaire confirmed the results.
Resumo:
This study explores Swedish Natural Science students' conceptions about gender and mathematics. I conducted and compared the results from two questionnaires. The first questionnaire revealed a view of rather traditional feminities and masulinities, a result that did not repeat itself in the second questionnaire. There was a discrepancy between the traits the students ascribed as gender different and the traits they ascribed to themselves.
Resumo:
Este artigo traz uma reflexão acerca da avaliação em Matemática, destacando os modos pelos quais essa avaliação pode vir a ser compreendida e discutida em um curso de formação de professores da área. Explicita-se como, a partir das situações de sala de aula, o olhar para as possibilidades da avaliação pode contribuir para a formação desse professor no que diz respeito ao compreendido pelos alunos. São analisadas três situações-problema, propostas aos alunos do curso de graduação em Matemática, cujo foco é o modo de avaliar. O olhar avaliativo e o fazer Matemática são entendidos como uma forma de o aluno voltar-se para o conteúdo matemático, abrindo-se ao que, no seu lidar cotidiano, se mostra. Diz-se da importância de se considerarem os "dados relevantes" e o "a ser conhecido" nas situações de avaliação que permitem, ao professor, ler a aprendizagem do aluno em seu modo de se expressar.
Resumo:
This study proposes a simplified mathematical model to describe the processes occurring in an anaerobic sequencing batch biofilm reactor (ASBBR) treating lipid-rich wastewater. The reactor, subjected to rising organic loading rates, contained biomass immobilized cubic polyurethane foam matrices, and was operated at 32 degrees C +/- 2 degrees C, using 24-h batch cycles. In the adaptation period, the reactor was fed with synthetic substrate for 46 days and was operated without agitation. Whereas agitation was raised to 500 rpm, the organic loading rate (OLR) rose from 0.3 g chemical oxygen demand (COD) . L(-1) . day(-1) to 1.2 g COD . L(-1) . day(-1). The ASBBR was fed fat-rich wastewater (dairy wastewater), in an operation period lasting for 116 days, during which four operational conditions (OCs) were tested: 1.1 +/- 0.2 g COD . L(-1) . day(-1) (OC1), 4.5 +/- 0.4 g COD . L(-1) . day(-1) (OC2), 8.0 +/- 0.8 g COD . L(-1) . day(-1) (OC3), and 12.1 +/- 2.4 g COD . L(-1) . day(-1) (OC4). The bicarbonate alkalinity (BA)/COD supplementation ratio was 1:1 at OC1, 1:2 at OC2, and 1:3 at OC3 and OC4. Total COD removal efficiencies were higher than 90%, with a constant production of bicarbonate alkalinity, in all OCs tested. After the process reached stability, temporal profiles of substrate consumption were obtained. Based on these experimental data a simplified first-order model was fit, making possible the inference of kinetic parameters. A simplified mathematical model correlating soluble COD with volatile fatty acids (VFA) was also proposed, and through it the consumption rates of intermediate products as propionic and acetic acid were inferred. Results showed that the microbial consortium worked properly and high efficiencies were obtained, even with high initial substrate concentrations, which led to the accumulation of intermediate metabolites and caused low specific consumption rates.
Resumo:
In this paper, we consider Meneghetti & Bicudo's proposal (2003) regarding the constitution of mathematical knowledge and analyze it with respect to the following two focuses: in relation to conceptions of mathematical knowledge following the fundamentalist crisis in mathematics; and in the educational context of mathematics. The investigation of the first focus is done analyzing new claims in mathematical philosophy. The investigation of the second focus is done firstly via a theoretical reflection followed by an examination of the implementation of the proposal in the process of development of didactic materials for teaching and learning Mathematics. Finally, we present the main results of the application of one of those materials.
Resumo:
A multiphase deterministic mathematical model was implemented to predict the formation of the grain macrostructure during unidirectional solidification. The model consists of macroscopic equations of energy, mass, and species conservation coupled with dendritic growth models. A grain nucleation model based on a Gaussian distribution of nucleation undercoolings was also adopted. At some solidification conditions, the cooling curves calculated with the model showed oscillations (""wiggles""), which prevented the correct prediction of the average grain size along the structure. Numerous simulations were carried out at nucleation conditions where the oscillations are absent, enabling an assessment of the effect of the heat transfer coefficient on the average grain size and columnar-to-equiaxed transition.
Resumo:
Thermodynamic relations between the solubility of a protein and the solution pH are presented in this work. The hypotheses behind the development are that the protein chemical potential in liquid phase can be described by Henry`s law and that the solid-liquid equilibrium is established only between neutral molecules. The mathematical development results in an analytical expression of the solubility curve, as a function of the ionization equilibrium constants, the pH and the solubility at the isoelectric point. It is shown that the same equation can be obtained either by directly calculating the fraction of neutral protein molecules or by integrating the curve of the protein average charge. The methodology was successfully applied to the description of the solubility of porcine insulin as a function of pH at three different temperatures and of bovine beta-lactoglobulin at four different ionic strengths. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This essay is a trial on giving some mathematical ideas about the concept of biological complexity, trying to explore four different attributes considered to be essential to characterize a complex system in a biological context: decomposition, heterogeneous assembly, self-organization, and adequacy. It is a theoretical and speculative approach, opening some possibilities to further numerical and experimental work, illustrated by references to several researches that applied the concepts presented here. (C) 2008 Elsevier B.V. All rights reserved.