900 resultados para Malnourished rats


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A regimen of low-protein diet induces a reduction of pancreatic islet function that is associated with development of metabolic disorders including diabetes and obesity afterward. In the present study, the influence of leucine supplementation on metabolic parameters, insulin secretion to glucose and to amino acids, as well as the levels of proteins that participate in the phosphatidylinositol 3-phosphate kinase (PI3K) pathway was investigated in malnourished rats. Four groups were fed with different diets for 12 weeks: a normal protein diet (17%) without (NP) or with leucine supplementation (NPL) or a low (6%)-protein diet without (LP) or with leucine supplementation (LPL). Leucine was given in the drinking water during the last 4 weeks. As indicated by the intraperitoneal glucose tolerance test, LPL rats exhibited increased glucose tolerance as compared with NPL group. Both NPL and LPL rats had higher circulating insulin levels than controls. The LPL rats also showed increased insulin secretion by pancreatic islets in response to glucose or arginine compared with those observed in islets from LP animals. Glucose oxidation was significantly reduced in NPL, LP, and LPL isolated islets as compared with NP; but no alteration was observed for leucine and glutamate oxidation among the 4 groups. Western blotting analysis demonstrated increased PI3K and mammalian target protein of rapamycin protein contents in LPL compared with LP islets. A significant increase in insulin-induced insulin receptor substrate I associated PI3K activation was also observed in LPL compared with LP islets. These findings indicate that leucine supplementation can augment islet function in malnourished rats and that activation of the PI3K/maminalian target protein of rapamycin pathway may play a role in this process. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-protein diet impairs insulin secretion in response to nutrients and may induce several metabolic disorders including diabetes, obesity, and cardiovascular disease. In the present study, the influence of leucine supplementation on glutamate dehydrogenase (GDH) expression and glucose-induced insulin secretion (GIIS) was investigated in malnourished rats. Four groups were fed with different diets for 12 weeks: a normal-protein diet (17%) without or with leucine supplementation or a low (6%)-protein diet without (LP) or with leucine supplementation (LPL). Leucine (1.5%) was supplied in the drinking water. Western blotting analysis revealed reduced GIN! expression in LP, whereas LPL displayed improved GDH expression, similar to control. The GHS and leucinc-induced insulin release were also enhanced in LPL compared with LP and similar to those observed in rats fed a normal-protein diet without leucine supplementation. In addition, GDH allosteric activators produced an increased insulin secretion in LPL. These findings indicate that leucine supplementation was able to increase GDH expression leading to Cl IS restoration, probably by improved leucine metabolic pathways. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown previously that malnourished rats are resistant to acute gastric lesions but not to subchronic gastric ulceration. It also has been demonstrated that the essential oil obtained from the bark of Croton cajucara (Sacaca) has antiulcer properties. In the present study, the ability of this essential oil to prevent the formation of gastric ulcers in rats fed a diet with 17 % protein (normoproteic rats) or 6 % protein (malnourished rats) was investigated. At a dose of 100 mg/kg body weight, orally, the essential oil significantly reduced the gastric injury caused by indomethacin (25 % after 2 h and 70 % after 4 h) only in normoproteic rats. In the pylorus ligature model, the essential oil increased the pH and gastric volume, but decreased the total acid concentration in both groups when compared to the respective control group. The essential oil significantly increased prostaglandin E2 production in glandular cells by 50 % compared to the controls in both groups of rats. In addition, the amount of gastric mucus was two-fold higher in malnourished rats than in normoproteic rats. The present results show that the enhanced protective effect of essential oil in malnourished rats involved an increase in prostaglandin E2 production and mucus secretion, which are both factors that protect the gastric mucosa against damage. In agreement with this, malnourished rats always had a lower number of acute gastric ulcers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resistance of the abdominal aorta of rats after 6, 7 and 8 weeks of malnutrition, compared with control animals, was evaluated by longitudinal tensiometry. Weakness of this vessel in malnourished rats was demonstrated; microscopic examination of the aorta stained by Masson, Calleja and hematoxylin-eosin methods showed a decrease in amorphous ground substance and an increase in the width of elastic laminae. There was no visible alteration either in the endothelial lining layer or in the smooth muscle fibers. Such alterations of the aorta are, to the authors' knowledge, the first reported modifications in the peripheral vasculature after malnutrition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes in Ca-45 uptake and insulin secretion in response to glucose, leucine, and arginine were measured in isolated islets derived from 4-week-old rats born of mothers maintained with normal protein (NP, 17%) or low protein (LP, 6%) diet during pregnancy and lactation. Glucose provoked a dose-dependent stimulation of insulin secretion in both groups of islets, with basal (2.8 mmol/L glucose) and maximal release (27.7 mmol/L glucose) significantly reduced in LP compared with NP islets. In the LP group the concentration-response curve to glucose was shifted to the right compared with the NP group, with the half-maximal response occurring at 16.9 and 13.3 mmol/L glucose, respectively. In LP islets, glucose-induced first and second phases of insulin secretions were drastically reduced. In addition, insulin response to individual amino acids, or in association with glucose, was also significantly reduced in the LP group compared with NP islets. Finally, in LP islets the Ca-45 uptake after 5 minutes or 90 minutes of incubation (which reflect mainly the entry and retention, respectively, of Ca2+), was lower than in NP islets. These data indicate that in malnourished rats both initial and sustained phases of insulin secretion in response to glucose were reduced. This poor secretory response to nutrients seems to be the consequence of an altered Ca2+ handling by malnourished islet cells. (J. Nutr. Biochem. 10:37-43, 1999) (C) Elsevier B.V. 1999. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Effects of undernutrition and protein malnutrition on the quantitative and qualitative changes in myelin isolated from rat brain at 3 and 8 weeks of age were investigated. Undernutrition during suckling period was induced by increasing the litter size, and continued from the 3rd to the 8th week by limited food intake, or the rats were rehabilitated with adequate food. Protein malnutrition was induced by feeding the lactating dams 5% protein diet as against 25% protein diet in controls. The protein malnourished rats were rehabilitated from the 3rd to the 8th week with the normal 25% protein diet. Undernutrition produced 16% and 35% reductions in the myelin content at 3 and 8 weeks of age, respectively, and was only partially restored on rehabilitation. Protein malnutrition caused more drastic reduction of 27% in the myelin content at 3 weeks, which was also partially restored on rehabilitation. The specific activity of 2′,3′-cyclic nucleotide 3′-phosphohydrolase was not affected by undernutrition, whereas protein malnutrition caused a 25% reduction at 3 weeks, which was totally reversed by rehabilitation. Undernutrition had not altered the relative composition of myelin proteins, but protein malnutrition resulted in a significant reduction in the proteolipid protein at 3 weeks of age, which could be reversed by rehabilitation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: Protein malnutrition is characterized by a number of morphologic and physiologic alterations, including intestinal mucosal atrophy and impaired nutrient absorption. Impaired absorption accentuates nutritional deficiency and accelerates body weight loss and changes in body chemistry. Because leucine is a ketogenic and oxidative amino acid and stimulates the protein synthesis, we examined the ability of young rats to recover from protein malnutrition by feeding them a control balanced or a leucine-rich diet for 60 d.METHODS: At the end of the 60-d period, body, liver, and muscle weights; glucose, methionine, and leucine intestinal absorption; and carcass chemical composition were evaluated.RESULTS: Body weight gain was higher in the control balanced and leucine-rich groups than in control rats, indicating that adequate refeeding allows body weight to recover in these groups. Methionine and glucose absorptions were impaired in malnourished rats but were restored after nutritional recovery. The leucine-rich diet resulted in an increase in carcass collagen nitrogen but maintained the carcass structural nitrogen.CONCLUSIONS: These results indicated that leucine supplementation during nutritional recovery from protein malnutrition improves protein carcass restoration. However, the precise mechanism of the leucine effects involved in this response remains to be elucidated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of intrauterine and postnatal protein-calorie malnutrition on the biochemical ability to perform exercise was investigated in young male rats. Malnourished rats were obtained by feeding dams a low-protein (6%) casein-based diet prepared in the laboratory during pregnancy and lactation. Control rats received an isocaloric diet containing 25% protein. The low-protein diet contained additional starch and glucose. At 45 days of age, malnourished rats showed lower body weight, serum protein, albumin and glucose levels, hematocrit values and heart glycogen content but higher circulating free fatty acids and gastrocnemius muscle glycogen than control rats. In response to exercise (50 min of swimming), control rats displayed lower heart, gastrocnemius and liver glycogen levels whereas malnourished rats showed low glycogen levels only in the gastrocnemius muscle. Both control and malnourished rats showed high serum glucose and free fatty acid levels after exercise. In conclusion, protein-calorie malnutrition improved muscle glycogen storage but this substrate was broken down to a greater extent in response to exercise. Malnourished rats were able to perform exercise maintaining high blood glucose levels, as observed in control rats, perhaps as a consequence of the elevated availability of circulating free fatty acids.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Malnutrition is related to diabetes in tropical countries. In experimental animals, protein deficiency may affect insulin secretion. However, the effect of malnutrition on insulin receptor phosphorylation and further intracellular signaling events is not known. Therefore, we decided to evaluate the rate of insulin secretion and the early molecular steps of insulin action in insulin-sensitive tissues of an animal model of protein deficiency. Pancreatic islets isolated from rats fed a standard (17%) or a low (6%) protein diet were studied for their secretory response to increasing concentrations of glucose in the culture medium. Basal as well as maximal rates of insulin secretion were significantly lower in the islets isolated from rats fed a low protein diet. Moreover, the dose-response curve to glucose was significantly shifted to the right in the islets from malnourished rats compared with islets from control rats. During an oral glucose tolerance test, there were significantly lower circulating concentrations of insulin in the serum of rats fed a low protein diet in spite of no difference in serum glucose concentration between the groups, suggesting an increased peripheral insulin sensitivity. Immunoblotting and immunoprecipitation were used to study the phosphorylation of the insulin receptor and the insulin receptor substrate-1 as well as the insulin receptor substrate-1-p85 subunit of phosphatidylinositol 3-kinase association in response to insulin. Values were greater in hind-limb muscle from rats fed a low protein diet compared with controls. No differences were detected in the total amount of protein corresponding to the insulin receptor or insulin receptor substrate-1 between muscle from rats fed the two diets. Therefore, we conclude that a decreased glucose-induced insulin secretion in pancreatic islets from protein-malnourished rats is responsible, at least in part, for an increased phosphorylation of the insulin receptor, insulin receptor substrate-1 and its association with phosphatidylinositol 3-kinase. These might represent some of the factors influencing the equilibrium in glucose concentrations observed in animal models of malnutrition and undernourished subjects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: The purpose of the present study was to examine insulin secretion in rats submitted to protein restriction and nutritional recovery associated or not to physical training. Methods: The experiment was designed in two sets of five weeks each. In the first set the rats were fed a nonnal-protein diet(17%-control group) or a low-protein diet (6%-malnourished group) for five weeks. After this, all animals were fed the 17% protein diet and separated into four groups: sedentary control(SC); trained eontrol(TC); sedentary recovered(SR) and trained recovered(TR). TC and TR rats performed swimming exercise. Results: The results indicated efficiency of the 6% protein diet in producing signs of malnutrition, as reduction in body weight gain and serum albumin levels, as well as liver fat. Serum insulin in the fed state and insulin secretion by isolated pancreatic islets in response to glucose were Keduced,but peripheral sensitivity to insulin was increased and glucose tolerance was not changed in the protein deficient rats, indicating adaptation to malnutrition. Diet protocol for nutritional recovery was efficient in repairing body weight gain, serum albumin and liver fat levels of the previously malnourished rats. Glucose induced insulin release by pancreatic islets remained low after nutritional recovery. Insulin secretion by the islets isolated from rats submitted to exercise training during nutritional recovery was improved when compared with the sedentary animals. Conclusion: This indicates that exercise training may be useful in the treatment of protein calorie malnutrition, concerning to glucose induced insulip secretion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Malnutrition is a worldwide problem affecting millions of unborn and young children during the most vulnerable stages of brain development (1). All restriction of protein during the perinatal period of life can alter the development of mammalian fetus and have marked repercussions on development of the Central Nervous System (CNS). The brain is vulnerable to protein malnutrition with altered morphologic and biochemical maturation, leading to impaired functions. The focus of this study is to investigate [U-14C]glycine metabolism in malnourished rats submitted to pre- and postnatal protein deprivation (diet: 8% protein with addition and without addition of L-methionine) on glycine metabolism of rats (normonourished group: 25% protein). It was observed that protein malnutrition alters oxidation to CO2, conversion to lipids and protein synthesis from [U-14C]glycine in cerebellum of malnourished rats without addition of L-methionine on a diet at 7 and 21 days of postnatal life. Our results also indicate that protein malnutrition causes a retardation in the normally ordered progression of brain development, and the malnourished groups have smaller cells, reduction in cell numbers and smaller cerebellar weight comparing to the control group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No presente trabalho é descrita a composição de dieta hipoprotéica (6% de proteína) purificada para indução de quadro de desnutrição em roedores. A referida dieta foi padronizada em laboratório a partir de modificação da AIN-93 (documento do American Institute of Nutrition que estabelece os padrões nutricionais para roedores de laboratório), visando a obtenção de animais desnutridos para estudar as alterações metabólicas decorrentes da desnutrição protéica associada a situações como exercício físico, gestação e diabetes. A dieta em questão contém os seguintes componentes (g/ kg): amido de milho (480), caseína (71,5), dextrina de milho (159), sacarose (121), óleo de soja (70), microcelulose (50), mistura mineral AIN-93-G-MX (35), mistura de vitaminas AIN-93-G-VX, (10), L-cistina (1), cloridrato de colina (2,5). Ratos alimentados cronicamente com a dieta apresentaram sinais comumente presentes na desnutrição protéica humana e de animais de laboratório: redução do ganho de peso, hipoproteinemia, hipoalbuminemia, elevação dos ácidos graxos livres séricos e do glicogênio hepático.