881 resultados para Linear operators


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There exist striking analogies in the behaviour of eigenvalues of Hermitian compact operators, singular values of compact operators and invariant factors of homomorphisms of modules over principal ideal domains, namely diagonalization theorems, interlacing inequalities and Courant-Fischer type formulae. Carlson and Sa [D. Carlson and E.M. Sa, Generalized minimax and interlacing inequalities, Linear Multilinear Algebra 15 (1984) pp. 77-103.] introduced an abstract structure, the s-space, where they proved unified versions of these theorems in the finite-dimensional case. We show that this unification can be done using modular lattices with Goldie dimension, which have a natural structure of s-space in the finite-dimensional case, and extend the unification to the countable-dimensional case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From lectures given at the New York university Institute for mathematica and mechanics, by R. Cournat and others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 47A48, 93B28, 47A65; Secondary 34C94.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article analyzes Folner sequences of projections for bounded linear operators and their relationship to the class of finite operators introduced by Williams in the 70ies. We prove that each essentially hyponormal operator has a proper Folner sequence (i.e. a Folner sequence of projections strongly converging to 1). In particular, any quasinormal, any subnormal, any hyponormal and any essentially normal operator has a proper Folner sequence. Moreover, we show that an operator is finite if and only if it has a proper Folner sequence or if it has a non-trivial finite dimensional reducing subspace. We also analyze the structure of operators which have no Folner sequence and give examples of them. For this analysis we introduce the notion of strongly non-Folner operators, which are far from finite block reducible operators, in some uniform sense, and show that this class coincides with the class of non-finite operators.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the first half of this memoir we explore the interrelationships between the abstract theory of limit operators (see e.g. the recent monographs of Rabinovich, Roch and Silbermann (2004) and Lindner (2006)) and the concepts and results of the generalised collectively compact operator theory introduced by Chandler-Wilde and Zhang (2002). We build up to results obtained by applying this generalised collectively compact operator theory to the set of limit operators of an operator (its operator spectrum). In the second half of this memoir we study bounded linear operators on the generalised sequence space , where and is some complex Banach space. We make what seems to be a more complete study than hitherto of the connections between Fredholmness, invertibility, invertibility at infinity, and invertibility or injectivity of the set of limit operators, with some emphasis on the case when the operator is a locally compact perturbation of the identity. Especially, we obtain stronger results than previously known for the subtle limiting cases of and . Our tools in this study are the results from the first half of the memoir and an exploitation of the partial duality between and and its implications for bounded linear operators which are also continuous with respect to the weaker topology (the strict topology) introduced in the first half of the memoir. Results in this second half of the memoir include a new proof that injectivity of all limit operators (the classic Favard condition) implies invertibility for a general class of almost periodic operators, and characterisations of invertibility at infinity and Fredholmness for operators in the so-called Wiener algebra. In two final chapters our results are illustrated by and applied to concrete examples. Firstly, we study the spectra and essential spectra of discrete Schrödinger operators (both self-adjoint and non-self-adjoint), including operators with almost periodic and random potentials. In the final chapter we apply our results to integral operators on .

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The play operator has a fundamental importance in the theory of hysteresis. It was studied in various settings as shown by P. Krejci and Ph. Laurencot in 2002. In that work it was considered the Young integral in the frame of Hilbert spaces. Here we study the play in the frame of the regulated functions (that is: the ones having only discontinuities of the first kind) on a general time scale T (that is: with T being a nonempty closed set of real numbers) with values in a Banach space. We will be showing that the dual space in this case will be defined as the space of operators of bounded semivariation if we consider as the bilinearity pairing the Cauchy-Stieltjes integral on time scales.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gelfand and Ponomarev [I.M. Gelfand, V.A. Ponomarev, Remarks on the classification of a pair of commuting linear transformations in a finite dimensional vector space, Funct. Anal. Appl. 3 (1969) 325-326] proved that the problem of classifying pairs of commuting linear operators contains the problem of classifying k-tuples of linear operators for any k. We prove an analogous statement for semilinear operators. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We introduce the notion of Lipschitz compact (weakly compact, finite-rank, approximable) operators from a pointed metric space X into a Banach space E. We prove that every strongly Lipschitz p-nuclear operator is Lipschitz compact and every strongly Lipschitz p-integral operator is Lipschitz weakly compact. A theory of Lipschitz compact (weakly compact, finite-rank) operators which closely parallels the theory for linear operators is developed. In terms of the Lipschitz transpose map of a Lipschitz operator, we state Lipschitz versions of Schauder type theorems on the (weak) compactness of the adjoint of a (weakly) compact linear operator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we study the existence of global solutions for a class of abstract functional differential equation with nonlocal conditions. An application is considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is devoted to the study of the class of continuous and bounded functions f : [0, infinity] -> X for which exists omega > 0 such that lim(t ->infinity) (f (t + omega) - f (t)) = 0 (in the sequel called S-asymptotically omega-periodic functions). We discuss qualitative properties and establish some relationships between this type of functions and the class of asymptotically omega-periodic functions. We also study the existence of S-asymptotically omega-periodic mild solutions of the first-order abstract Cauchy problem in Banach spaces. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we discuss the existence of solutions for a class of abstract degenerate neutral functional differential equations. Some applications to partial differential equations are considered.