952 resultados para Kirchhoff plate equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove a uniqueness result related to the Germain–Lagrange dynamic plate differential equation. We consider the equation {∂2u∂t2+△2u=g⊗f,in ]0,+∞)×R2,u(0)=0,∂u∂t(0)=0, where uu stands for the transverse displacement, ff is a distribution compactly supported in space, and g∈Lloc1([0,+∞)) is a function of time such that g(0)≠0g(0)≠0 and there is a T0>0T0>0 such that g∈C1[0,T0[g∈C1[0,T0[. We prove that the knowledge of uu over an arbitrary open set of the plate for any interval of time ]0,T[]0,T[, 0

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the family of singularly nonautonomous plate equation with structural dampingu(tt) + a(t, x)u(t) - Delta u(t) + (-Delta)(2)(u) + lambda u = f(u),in a bounded domain Omega subset of R(n), with Navier boundary conditions. When the nonlinearity f is dissipative we show that this problem is globally well posed in H(0)(2)(Omega) x L(2)(Omega) and has a family of pullback attractors which is upper-semicontinuous under small perturbations of the damping a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we prove the exponential decay as time goes to infinity of regular solutions of the problem for the Kirchhoff wave equation with nonlocal condition and weak dampingu(tt) - M (\\delU\\(2)(2)) Deltau + integral(0)(t) g(t - s)Deltau(.,s) ds + alphau(t) = 0, in (Q) over cap,where (Q) over cap is a noncylindrical domain of Rn+1 (n greater than or equal to 1) with the lateral boundary (&USigma;) over cap and alpha is a positive constant. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the energy decay for a class of plate equations with memory and lower order perturbation of p-Laplacian type, utt+?2u-?pu+?0tg(t-s)?u(s)ds-?ut+f(u)=0inOXR+, with simply supported boundary condition, where O is a bounded domain of RN, g?>?0 is a memory kernel that decays exponentially and f(u) is a nonlinear perturbation. This kind of problem without the memory term models elastoplastic flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After a short introduction the possibilities and limitations of polynomial simple elements with C1 continuity are discussed with reference to plate bending analysis. A family of this kind of elements is presented.. These elements are applied to simple cases in order to assess their computational efficiency. Finally some conclusions are shown, and future research is also proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Squeeze film damping effects naturally occur if structures are subjected to loading situations such that a very thin film of fluid is trapped within structural joints, interfaces, etc. An accurate estimate of squeeze film effects is important to predict the performance of dynamic structures. Starting from linear Reynolds equation which governs the fluid behavior coupled with structure domain which is modeled by Kirchhoff plate equation, the effects of nondimensional parameters on the damped natural frequencies are presented using boundary characteristic orthogonal functions. For this purpose, the nondimensional coupled partial differential equations are obtained using Rayleigh-Ritz method and the weak formulation, are solved using polynomial and sinusoidal boundary characteristic orthogonal functions for structure and fluid domain respectively. In order to implement present approach to the complex geometries, a two dimensional isoparametric coupled finite element is developed based on Reissner-Mindlin plate theory and linearized Reynolds equation. The coupling between fluid and structure is handled by considering the pressure forces and structural surface velocities on the boundaries. The effects of the driving parameters on the frequency response functions are investigated. As the next logical step, an analytical method for solution of squeeze film damping based upon Green’s function to the nonlinear Reynolds equation considering elastic plate is studied. This allows calculating modal damping and stiffness force rapidly for various boundary conditions. The nonlinear Reynolds equation is divided into multiple linear non-homogeneous Helmholtz equations, which then can be solvable using the presented approach. Approximate mode shapes of a rectangular elastic plate are used, enabling calculation of damping ratio and frequency shift as well as complex resistant pressure. Moreover, the theoretical results are correlated and compared with experimental results both in the literature and in-house experimental procedures including comparison against viscoelastic dampers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive analytical solutions for the three-dimensional time-dependent buckling of a non-Newtonian viscous plate in a less viscous medium. For the plate we assume a power-law rheology. The principal, axes of the stretching D-ij in the homogeneously deformed ground state are parallel and orthogonal to the bounding surfaces of the plate in the flat state. In the model formulation the action of the less viscous medium is replaced by equivalent reaction forces. The reaction forces are assumed to be parallel to the normal vector of the deformed plate surfaces. As a consequence, the buckling process is driven by the differences between the in-plane stresses and out of plane stress, and not by the in-plane stresses alone as assumed in previous models. The governing differential equation is essentially an orthotropic plate equation for rate dependent material, under biaxial pre-stress, supported by a viscous medium. The differential problem is solved by means of Fourier transformation and largest growth coefficients and corresponding wavenumbers are evaluated. We discuss in detail fold evolutions for isotropic in-plane stretching (D-11 = D-22), uniaxial plane straining (D-22 = 0) and in-plane flattening (D-11 = -2D(22)). Three-dimensional plots illustrate the stages of fold evolution for random initial perturbations or initial embryonic folds with axes non-parallel to the maximum compression axis. For all situations, one dominant set of folds develops normal to D-11, although the dominant wavelength differs from the Biot dominant wavelength except when the plate has a purely Newtonian viscosity. However, in the direction parallel to D-22, there exist infinitely many modes in the vicinity of the dominant wavelength which grow only marginally slower than the one corresponding to the dominant wavelength. This means that, except for very special initial conditions, the appearance of a three-dimensional fold will always be governed by at least two wavelengths. The wavelength in the direction parallel to D-11 is the dominant wavelength, and the wavelength(s) in the direction parallel to D-22 is determined essentially by the statistics of the initial state. A comparable sensitivity to the initial geometry does not exist in the classic two-dimensional folding models. In conformity with tradition we have applied Kirchhoff's hypothesis to constrain the cross-sectional rotations of the plate. We investigate the validity of this hypothesis within the framework of Reissner's plate theory. We also include a discussion of the effects of adding elasticity into the constitutive relations and show that there exist critical ratios of the relaxation times of the plate and the embedding medium for which two dominant wavelengths develop, one at ca. 2.5 of the classical Biot dominant wavelength and the other at ca. 0.45 of this wavelength. We propose that herein lies the origin of parasitic folds well known in natural examples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is concerned with the existence of a global attractor for the nonlinear beam equation, with nonlinear damping and source terms, u(tt) + Delta(2)u -M (integral(Omega)vertical bar del u vertical bar(2)dx) Delta u + f(u) + g(u(t)) = h in Omega x R(+), where Omega is a bounded domain of R(N), M is a nonnegative real function and h is an element of L(2)(Omega). The nonlinearities f(u) and g(u(t)) are essentially vertical bar u vertical bar(rho) u - vertical bar u vertical bar(sigma) u and vertical bar u(t)vertical bar(r) u(t) respectively, with rho, sigma, r > 0 and sigma < rho. This kind of problem models vibrations of extensible beams and plates. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we study the generic hyperbolicity of equilibria of a reaction-diffusion system with respect to nonlinear terms in the set of C(2)-functions equipped with the Whitney Topology. To accomplish this, we combine Baire`s Lemma and the usual Transversality Theorem. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vibration-based energy harvesting has been investigated by several researchers over the last decade. The goal in this research field is to power small electronic components by converting the waste vibration energy available in their environment into electrical energy. Recent literature shows that piezoelectric transduction has received the most attention for vibration-to-electricity conversion. In practice, cantilevered beams and plates with piezoceramic layers are employed as piezoelectric energy harvesters. The existing piezoelectric energy harvester models are beam-type lumped parameter, approximate distributed parameter and analytical distributed parameter solutions. However, aspect ratios of piezoelectric energy harvesters in several cases are plate-like and predicting the power output to general (symmetric and asymmetric) excitations requires a plate-type formulation which has not been covered in the energy harvesting literature. In this paper. an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates. Generalized Hamilton`s principle for electroelastic bodies is reviewed and the FE model is derived based on the Kirchhoff plate assumptions as typical piezoelectric energy harvesters are thin structures. Presence of conductive electrodes is taken into account in the FE model. The predictions of the FE model are verified against the analytical solution for a unimorph cantilever and then against the experimental and analytical results of a bimorph cantilever with a tip mass reported in the literature. Finally, an optimization problem is solved where the aluminum wing spar of an unmanned air vehicle (UAV) is modified to obtain a generator spar by embedding piezoceramics for the maximum electrical power without exceeding a prescribed mass addition limit. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die vorliegende Arbeit befasst sich mit den Fehlern, die bei der Berechnung von Tragstrukturen auftreten können, dem Diskretisierungs- und dem Modellfehler. Ein zentrales Werkzeug für die Betrachtung des lokalen Fehlers in einer FE-Berechnung sind die Greenschen Funktionen, die auch in anderen Bereichen der Statik, wie man zeigen kann, eine tragende Rolle spielen. Um den richtigen Einsatz der Greenschen Funktion mit der FE-Technik sicherzustellen, werden deren Eigenschaften und die konsistente Generierung aufgezeigt. Mit dem vorgestellten Verfahren, der Lagrange-Methode, wird es möglich auch für nichtlineare Probleme eine Greensche Funktion zu ermitteln. Eine logische Konsequenz aus diesen Betrachtungen ist die Verbesserung der Einflussfunktion durch Verwendung von Grundlösungen. Die Greensche Funktion wird dabei in die Grundlösung und einen regulären Anteil, welcher mittels FE-Technik bestimmt wird, aufgespalten. Mit dieser Methode, hier angewandt auf die Kirchhoff-Platte, erhält man deutlich genauere Ergebnisse als mit der FE-Methode bei einem vergleichbaren Rechenaufwand, wie die numerischen Untersuchungen zeigen. Die Lagrange-Methode bietet einen generellen Zugang zur zweiten Fehlerart, dem Modellfehler, und kann für lineare und nichtlineare Probleme angewandt werden. Auch hierbei übernimmt die Greensche Funktion wieder eine tragende Rolle, um die Auswirkungen von Parameteränderungen auf ausgewählte Zielgrößen betrachten zu können.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we show that the eigenvalues of the Dirichlet problem for the biharmonic operator are generically simple in the set Of Z(2)-symmetric regions of R-n, n >= 2, with a suitable topology. To accomplish this, we combine Baire`s lemma, a generalised version of the transversality theorem, due to Henry [Perturbation of the boundary in boundary value problems of PDEs, London Mathematical Society Lecture Note Series 318 (Cambridge University Press, 2005)], and the method of rapidly oscillating functions developed in [A. L. Pereira and M. C. Pereira, Mat. Contemp. 27 (2004) 225-241].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Equações diferenciais de quarta ordem aparecem naturalmente na modelagem de oscilações de estruturas elásticas, como aquelas observadas em pontes pênseis. São considerados dois modelos que descrevem as oscilações no tabuleiro de uma ponte. No modelo unidimensional estudamos blow up em espaço finito de soluções de uma classe de equações diferenciais de quarta ordem. Os resultados apresentados solucionam uma conjectura apresentada em [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] e implicam a não existência de ondas viajantes com baixa velocidade de propagação em uma viga. No modelo bidimensional analisamos uma equação não local para uma placa longa e fina, suportada nas extremidades menores, livre nas demais e sujeita a protensão. Provamos existência e unicidade de solução fraca e estudamos o seu comportamento assintótico sob amortecimento viscoso. Estudamos ainda a estabilidade de modos simples de oscilação, os quais são classificados como longitudinais ou torcionais.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation aims at developing advanced analytical tools able to model surface waves propagating in elastic metasurfaces. In particular, four different objectives are defined and pursued throughout this work to enrich the description of the metasurface dynamics. First, a theoretical framework is developed to describe the dispersion properties of a seismic metasurface composed of discrete resonators placed on a porous medium considering part of it fully saturated. Such a model combines classical elasticity theory, Biot’s poroelasticity and an effective medium approach to describe the metasurface dynamics and its coupling with the poroelastic substrate. Second, an exact formulation based on the multiple scattering theory is developed to extend the two-dimensional classical Lamb’s problem to the case of an elastic half-space coupled to an arbitrary number of discrete surface resonators. To this purpose, the incident wavefield generated by a harmonic source and the scattered field generated by each resonator are calculated. The substrate wavefield is then obtained as solutions of the coupled problem due to the interference of the incident field and the multiple scattered fields of the oscillators. Third, the above discussed formulation is extended to three-dimensional contexts. The purpose here is to investigate the dynamic behavior and the topological properties of quasiperiodic elastic metasurfaces. Finally, the multiple scattering formulation is extended to model flexural metasurfaces, i.e., an array of thin plates. To this end, the resonant plates are modeled by means of their equivalent impedance, derived by exploiting the Kirchhoff plate theory. The proposed formulation permits the treatment of a general flexural metasurface, with no limitation on the number of plates and the configuration taken into account. Overall, the proposed analytical tools could pave the way for a better understanding of metasurface dynamics and their implementation in engineered devices.