981 resultados para K-uniformly Convex Functions
Resumo:
2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15
Resumo:
In this paper an alternative characterization of the class of functions called k -uniformly convex is found. Various relations concerning connections with other classes of univalent functions are given. Moreover a new class of univalent functions, analogous to the ’Mocanu class’ of functions, is introduced. Some results concerning this class are derived.
Resumo:
In this paper, we prove that if a Banach space X contains some uniformly convex subspace in certain geometric position, then the C(K, X) spaces of all X-valued continuous functions defined on the compact metric spaces K have exactly the same isomorphism classes that the C(K) spaces. This provides a vector-valued extension of classical results of Bessaga and Pelczynski (1960) [2] and Milutin (1966) [13] on the isomorphic classification of the separable C(K) spaces. As a consequence, we show that if 1 < p < q < infinity then for every infinite countable compact metric spaces K(1), K(2), K(3) and K(4) are equivalent: (a) C(K(1), l(p)) circle plus C(K(2), l(q)) is isomorphic to C(K(3), l(p)) circle plus (K(4), l(q)). (b) C(K(1)) is isomorphic to C(K(3)) and C(K(2)) is isomorphic to C(K(4)). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University, College Station, Texas, 2000. Research partially supported by the Edmund Landau Center for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation (Germany).
Resumo:
We give a new construction of uniformly convex norms with a power type modulus on super-reflexive spaces based on the notion of dentability index. Furthermore, we prove that if the Szlenk index of a Banach space is less than or equal to ω (first infinite ordinal) then there is an equivalent weak* lower semicontinuous positively homogeneous functional on X* satisfying the uniform Kadec-Klee Property for the weak*-topology (UKK*). Then we solve the UKK or UKK* renorming problems for Lp(X) spaces and C(K) spaces for K scattered compact space.
Resumo:
In a partially ordered semigroup with the duality (or polarity) transform, it is pos- sible to define a generalisation of continued fractions. General sufficient conditions for convergence of continued fractions are provided. Two particular applications concern the cases of convex sets with the Minkowski addition and the polarity transform and the family of non-negative convex functions with the Legendre–Fenchel and Artstein-Avidan–Milman transforms.
Resumo:
∗ The work is partially supported by NSFR Grant No MM 409/94.
Resumo:
MSC2010: 30C45, 33C45
Resumo:
We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable con dence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochastic Mirror Descent algorithm and obtain con dence intervals on both the optimal values and optimal solutions. Numerical simulations show that our con dence intervals are much less conservative and are quicker to compute than previously obtained con dence intervals for SMD and that the multistep Stochastic Mirror Descent algorithm can obtain a good approximate solution much quicker than its nonmultistep counterpart. Our con dence intervals are also more reliable than asymptotic con dence intervals when the sample size is not much larger than the problem size.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
2000 Mathematics Subject Classification: Primary 26A33, 30C45; Secondary 33A35
Resumo:
The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the Kurdyka- Lojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by -∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the Kurdyka- Lojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines -a concept linked to the location of the less steepest points at the level sets of f- and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the Kurdyka- Lojasiewicz inequality.
Resumo:
In several computer graphics areas, a refinement criterion is often needed to decide whether to goon or to stop sampling a signal. When the sampled values are homogeneous enough, we assume thatthey represent the signal fairly well and we do not need further refinement, otherwise more samples arerequired, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is verysensitive to variability is necessary. In this paper, we present a family of discrimination measures, thef-divergences, meeting this requirement. These convex functions have been well studied and successfullyapplied to image processing and several areas of engineering. Two applications to global illuminationare shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. Weobtain significantly better results than with classic criteria, showing that f-divergences are worth furtherinvestigation in computer graphics. Also a discrimination measure based on entropy of the samples forrefinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a naturalmethod to deal with the adaptive subdivision of the sampling region
Resumo:
La vitamine K fait l’objet d’un intérêt croissant en regard du rôle qu’elle peut jouer dans la santé humaine hormis celui bien établi dans la coagulation sanguine. De plus en plus d’études expérimentales lui confèrent des fonctions dans le système nerveux central, particulièrement dans la synthèse des sphingolipides, l’activation de la protéine vitamine K-dépendante Gas6 et la protection contre les dommages oxydatifs. Toutefois, il demeure beaucoup moins bien établi si la perturbation de ces fonctions peut conduire à des déficits cognitifs. L’objectif principal de cette thèse est de vérifier l’hypothèse selon laquelle le statut vitaminique K des personnes âgées en santé est un déterminant de la performance cognitive. En vue de la réalisation de cet objectif, une meilleure compréhension des indicateurs du statut vitaminique K s’avérait nécessaire. Chacune des études présentées vise donc un objectif spécifique : 1) évaluer le nombre de rappels alimentaires de 24 heures non consécutifs nécessaire pour mesurer l’apport habituel de vitamine K des personnes âgées; 2) évaluer la valeur d’une seule mesure de la concentration sérique de vitamine K comme marqueur de l’exposition à long terme; et 3) examiner l’association entre le statut vitaminique K et la performance cognitive des personnes âgées en santé de la cohorte québécoise NuAge. Trois dimensions cognitives ont été évaluées soient la mémoire épisodique verbale et non-verbale, les fonctions exécutives et la vitesse de traitement de l’information. Cette thèse présente la première étude appuyant l’hypothèse d’un rôle de la vitamine K dans la cognition chez les personnes âgées. Spécifiquement, la concentration sérique de vitamine K a été associée positivement à la performance en mémoire épisodique verbale, et plus particulièrement au processus de consolidation de la trace mnésique. En accord avec les travaux chez l’animal et l’action de la protéine Gas6 dans l’hippocampe, un rôle spécifique de la vitamine K à l’étape de consolidation est biologiquement plausible. Aucune association significative n’a été observée avec les fonctions exécutives et la vitesse de traitement de l’information. Parallèlement, il a été démontré qu’une mesure unique de la concentration sérique de vitamine K constitue une mesure adéquate de l’exposition à long terme à la vitamine K. De même, il a été établi que six à 13 rappels alimentaires de 24 heures sont nécessaires pour estimer précisément l’apport de vitamine K des personnes âgées en santé. Collectivement, les résultats de ces deux études fournissent des informations précieuses aux chercheurs permettant une meilleure interprétation des études existantes et une meilleure planification des études futures. Les résultats de cette thèse constituent une avancée importante dans la compréhension du rôle potentiel de la vitamine K dans le système nerveux central et renforce la nécessité qu’elle soit considérée en tant que facteur nutritionnel du vieillissement cognitif, en particulier chez les personnes traitées par un antagoniste de la vitamine K.