On Uniformly Convex and Uniformly Kadec-Klee Renomings


Autoria(s): Lancien, Gilles
Data(s)

29/11/2009

29/11/2009

1995

Resumo

We give a new construction of uniformly convex norms with a power type modulus on super-reflexive spaces based on the notion of dentability index. Furthermore, we prove that if the Szlenk index of a Banach space is less than or equal to ω (first infinite ordinal) then there is an equivalent weak* lower semicontinuous positively homogeneous functional on X* satisfying the uniform Kadec-Klee Property for the weak*-topology (UKK*). Then we solve the UKK or UKK* renorming problems for Lp(X) spaces and C(K) spaces for K scattered compact space.

Identificador

Serdica Mathematical Journal, Vol. 21, No 1, (1995), 1p-18p

1310-6600

http://hdl.handle.net/10525/625

Idioma(s)

en

Publicador

Institute of Mathematics and Informatics Bulgarian Academy of Sciences

Palavras-Chave #Renorming #Szlenk Index #Dentability #Uniformly Convex #Kadec-Klee #Super-Reflexive #Scattered Compact #Lp Spaces
Tipo

Article