1000 resultados para Identificação de Sistemas. Inferência. Redes Neurais Artificiais. Teoria Wavelet. Redes Wavelet Neural Network. Redes Fuzzy Wavelet Neural Network
Resumo:
A serious problem that affects an oil refinery s processing units is the deposition of solid particles or the fouling on the equipments. These residues are naturally present on the oil or are by-products of chemical reactions during its transport. A fouled heat exchanger loses its capacity to adequately heat the oil, needing to be shut down periodically for cleaning. Previous knowledge of the best period to shut down the exchanger may improve the energetic and production efficiency of the plant. In this work we develop a system to predict the fouling on a heat exchanger from the Potiguar Clara Camarão Refinery, based on data collected in a partnership with Petrobras. Recurrent Neural Networks are used to predict the heat exchanger s flow in future time. This variable is the main indicator of fouling, because its value decreases gradually as the deposits on the tubes reduce their diameter. The prediction could be used to tell when the flow will have decreased under an acceptable value, indicating when the exchanger shutdown for cleaning will be needed
Resumo:
In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
Resumo:
O artigo relata um experimento de simulação computacional de um sistema de recuperação da informação composto por uma base de índices textuais de uma amostra de documentos, um software de rede neural artificial implementando conceitos da Teoria da Ressonância Adaptativa, para automação do processo de ordenação e apresentação de resultados, e um usuário humano interagindo com o sistema em processos de consulta. O objetivo do experimento foi demonstrar (i) a utilidade das redes neurais de Carpenter e Grossberg (1988) baseadas nessa teoria e (ii) o poder de resolução semântica com índices sintagmáticos da abordagem SiRILiCO proposta por Gottschalg-Duque (2005), para o qual um sintagma nominal ou proposição é uma unidade linguística constituda de sentido maior que o significado de uma palavra e menor que uma narrativa ou uma teoria. O experimento demonstrou a eficácia e a eficiência de um sistema de recuperação da informação combinando esses recursos, concluindo-se que um ambiente computacional dessa natureza terá capacidade de clusterização (agrupamento) variável on-line com entradas e aprendizado contínuos no modo não supervisionado, sem necessidade de treinamento em modo batch (off-line), para responder a consultas de usuários em redes de computadores com desempenho promissor.
Resumo:
A new method to perform TCP/IP fingerprinting is proposed. TCP/IP fingerprinting is the process of identify a remote machine through a TCP/IP based computer network. This method has many applications related to network security. Both intrusion and defence procedures may use this process to achieve their objectives. There are many known methods that perform this process in favorable conditions. However, nowadays there are many adversities that reduce the identification performance. This work aims the creation of a new OS fingerprinting tool that bypass these actual problems. The proposed method is based on the use of attractors reconstruction and neural networks to characterize and classify pseudo-random numbers generators
Resumo:
The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.
Resumo:
Nowadays, where the market competition requires products with better quality and a constant search for cost savings and a better use of raw materials, the research for more efficient control strategies becomes vital. In Natural Gas Processin Units (NGPUs), as in the most chemical processes, the quality control is accomplished through their products composition. However, the chemical composition analysis has a long measurement time, even when performed by instruments such as gas chromatographs. This fact hinders the development of control strategies to provide a better process yield. The natural gas processing is one of the most important activities in the petroleum industry. The main economic product of a NGPU is the liquefied petroleum gas (LPG). The LPG is ideally composed by propane and butane, however, in practice, its composition has some contaminants, such as ethane and pentane. In this work is proposed an inferential system using neural networks to estimate the ethane and pentane mole fractions in LPG and the propane mole fraction in residual gas. The goal is to provide the values of these estimated variables in every minute using a single multilayer neural network, making it possibly to apply inferential control techniques in order to monitor the LPG quality and to reduce the propane loss in the process. To develop this work a NGPU was simulated in HYSYS R software, composed by two distillation collumns: deethanizer and debutanizer. The inference is performed through the process variables of the PID controllers present in the instrumentation of these columns. To reduce the complexity of the inferential neural network is used the statistical technique of principal component analysis to decrease the number of network inputs, thus forming a hybrid inferential system. It is also proposed in this work a simple strategy to correct the inferential system in real-time, based on measurements of the chromatographs which may exist in process under study
Resumo:
This work describes the development of a nonlinear control strategy for an electro-hydraulic actuated system. The system to be controlled is represented by a third order ordinary differential equation subject to a dead-zone input. The control strategy is based on a nonlinear control scheme, combined with an artificial intelligence algorithm, namely, the method of feedback linearization and an artificial neural network. It is shown that, when such a hard nonlinearity and modeling inaccuracies are considered, the nonlinear technique alone is not enough to ensure a good performance of the controller. Therefore, a compensation strategy based on artificial neural networks, which have been notoriously used in systems that require the simulation of the process of human inference, is used. The multilayer perceptron network and the radial basis functions network as well are adopted and mathematically implemented within the control law. On this basis, the compensation ability considering both networks is compared. Furthermore, the application of new intelligent control strategies for nonlinear and uncertain mechanical systems are proposed, showing that the combination of a nonlinear control methodology and artificial neural networks improves the overall control system performance. Numerical results are presented to demonstrate the efficacy of the proposed control system
Resumo:
O conhecimento prévio do valor da carga é de extrema importância para o planejamento e operação dos sistemas de energia elétrica. Este trabalho apresenta os resultados de um estudo investigativo da aplicação de Redes Neurais Artificiais do tipo Perceptron Multicamadas com treinamento baseado na Teoria da Informação para o problema de Previsão de Carga a curto prazo. A aprendizagem baseada na Teoria da Informação se concentra na utilização da quantidade de informação (Entropia) para treinamento de uma rede neural artificial. Dois modelos previsores são apresentados sendo que os mesmos foram desenvolvidos a partir de dados reais fornecidos por uma concessionária de energia. Para comparação e verificação da eficiência dos modelos propostos um terceiro modelo foi também desenvolvido utilizando uma rede neural com treinamento baseado no critério clássico do erro médio quadrático. Os resultados alcançados mostraram a eficiência dos sistemas propostos, que obtiveram melhores resultados de previsão quando comparados ao sistema de previsão baseado na rede treinada pelo critério do MSE e aos sistemas previsores já apresentados na literatura.
Resumo:
Animal welfare has been an important research topic in animal production mainly in its ways of assessment. Vocalization is found to be an interesting tool for evaluating welfare as it provides data in a non-invasive way as well as it allows easy automation of process. The present research had as objective the implementation of an algorithm based on artificial neural network that had the potential of identifying vocalization related to welfare pattern indicatives. The research was done in two parts, the first was the development of the algorithm, and the second its validation with data from the field. Previous records allowed the development of the algorithm from behaviors observed in sows housed in farrowing cages. Matlab® software was used for implementing the network. It was selected a retropropagation gradient algorithm for training the network with the following stop criteria: maximum of 5,000 interactions or error quadratic addition smaller than 0.1. Validation was done with sows and piglets housed in commercial farm. Among the usual behaviors the ones that deserved enhancement were: the feed dispute at farrowing and the eventual risk of involuntary aggression between the piglets or between those and the sow. The algorithm was able to identify through the noise intensity the inherent risk situation of piglets welfare reduction.
Resumo:
The multilayer perceptron network was used to classify the gasoline. The main parameters used in the classification were established by the Ordinance nº 309 of the Agência Nacional do Petróleo, but without informing the network the legal limits of these parameters. The network used had 10 neurons in a single hidden layer, learning rate of 0.04 and 250 training epochs. The application of artificial neural network served classify 100% of the commercialized gas in the region of Londrina-PR and to identify the tampered gasoline even those suspected of tampering.
Resumo:
As transformações da prática médica nos últimos anos - sobretudo com a incorporação de novas tecnologias da informação - apontam a necessidade de ampliar as discussões sobre o processo ensino-aprendizagem na educação médica. A utilização de novas tecnologias computacionais no ensino médico tem demonstrado inúmeras vantagens no processo de aquisição de habilidades para a identificação e a resolução de problemas, o que estimula a criatividade, o senso crítico, a curiosidade e o espírito científico. Nesse contexto, ganham destaque as Redes Neurais Artificiais (RNA) - sistemas computacionais cuja estrutura matemática é inspirada no funcionamento do cérebro humano -, as quais têm sido úteis no processo ensino-aprendizagem e na avaliação de estudantes de Medicina. Com base nessas ponderações, o escopo da presente comunicação é revisar aspectos da aplicação das RNA na educação médica.
Resumo:
O bem-estar dos animais tem sido importante tópico de pesquisa na produção animal, principalmente no tocante às formas de sua avaliação. Na avaliação do bem-estar animal, a vocalização mostra-se como ferramenta interessante, por fornecer dados de forma não-invasiva, podendo também ser facilmente automatizada. O presente trabalho teve o objetivo de implementar algoritmo baseado em redes neurais artificiais, capaz de reconhecer vocalizações relacionadas com padrões indicativos de bem-estar. A pesquisa teve duas partes, sendo a primeira o desenvolvimento do algoritmo, e a segunda, sua validação com dados de campo. Registros prévios permitiram o desenvolvimento do algoritmo, a partir de comportamentos observados em porcas alojadas em gaiolas de maternidade. O software Matlab® foi utilizado na implementação da rede. Foi selecionado um algoritmo de gradiente de retropropagação para treinar a rede com os seguintes critérios de parada: máximo de 5.000 iterações ou soma quadrática do erro menor que 0,1. A validação deu-se com porcas e leitões alojados em granja comercial. Dentre os comportamentos usuais, os que mereceram destaque foram: a disputa por alimento no momento das mamadas e o eventual risco de agressão involuntária entre os leitões ou entre esses e a porca. O algoritmo foi capaz de reconhecer, por meio da intensidade do ruído, a situação inerente ao risco de redução do bem-estar dos leitões.
Resumo:
O presente trabalho apresenta uma nova metodologia de localização de faltas em sistemas de distribuição de energia. O esquema proposto é capaz de obter uma estimativa precisa da localização tanto de faltas sólidas e lineares quanto de faltas de alta impedância. Esta última classe de faltas representa um grande problema para as concessionárias distribuidoras de energia elétrica, uma vez que seus efeitos nem sempre são detectados pelos dispositivos de proteção utilizados. Os algoritmos de localização de faltas normalmente presentes em relés de proteção digitais são formulados para faltas sólidas ou com baixa resistência de falta. Sendo assim, sua aplicação para localização de faltas de alta impedância resulta em estimativas errôneas da distância de falta. A metodologia proposta visa superar esta deficiência dos algoritmos de localização tradicionais através da criação de um algoritmo baseado em redes neurais artificiais que poderá ser adicionado como uma rotina adicional de um relé de proteção digital. O esquema proposto utiliza dados oscilográficos pré e pós-falta que são processados de modo que sua localização possa ser estimada através de um conjunto de características extraídas dos sinais de tensão e corrente. Este conjunto de características é classificado pelas redes neurais artificiais de cuja saída resulta um valor relativo a distância de falta. Além da metodologia proposta, duas metodologias para localização de faltas foram implementadas, possibilitando a obtenção de resultados comparativos. Os dados de falta necessários foram obtidos através de centenas de simulações computacionais de um modelo de alimentador radial de distribuição. Os resultados obtidos demonstram a viabilidade do uso da metodologia proposta para localização de faltas em sistemas de distribuição de energia, especialmente faltas de alta impedância.