988 resultados para Hilbert-Schmidt operator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The singular continuous spectrum of the Liouville operator of quantum statistical physics is, in general, properly included in the difference of the spectral values of the singular continuous spectrum of the associated Hamiltonian. The absolutely continuous spectrum of the Liouvillian may arise from a purely singular continuous Hamiltonian. We provide the correct formulas for the spectrum of the Liouville operator and show that the decaying states of the singular continuous subspace of the Hamiltonian do not necessarily contribute to the absolutely continuous subspace of the Liouvillian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with some results (known as Kac-Akhiezer formulae) on generalized Fredholm determinants for Hilbert-Schmidt operators on L2-spaces, available in the literature for convolution kernels on intervals. The Kac-Akhiezer formulae have been obtained for kernels which are not necessarily of convolution nature and for domains in R(n).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gowers, dans son article sur les matrices quasi-aléatoires, étudie la question, posée par Babai et Sos, de l'existence d'une constante $c>0$ telle que tout groupe fini possède un sous-ensemble sans produit de taille supérieure ou égale a $c|G|$. En prouvant que, pour tout nombre premier $p$ assez grand, le groupe $PSL_2(\mathbb{F}_p)$ (d'ordre noté $n$) ne posséde aucun sous-ensemble sans produit de taille $c n^{8/9}$, il y répond par la négative. Nous allons considérer le probléme dans le cas des groupes compacts finis, et plus particuliérement des groupes profinis $SL_k(\mathbb{Z}_p)$ et $Sp_{2k}(\mathbb{Z}_p)$. La premiére partie de cette thése est dédiée à l'obtention de bornes inférieures et supérieures exponentielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite d'établir préalablement une borne inférieure sur la dimension des représentations non-triviales des groupes finis $SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ et $Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Notre théoréme prolonge le travail de Landazuri et Seitz, qui considérent le degré minimal des représentations pour les groupes de Chevalley sur les corps finis, tout en offrant une preuve plus simple que la leur. La seconde partie de la thése à trait à la théorie algébrique des nombres. Un polynome monogéne $f$ est un polynome unitaire irréductible à coefficients entiers qui endengre un corps de nombres monogéne. Pour un nombre premier $q$ donné, nous allons montrer, en utilisant le théoréme de densité de Tchebotariov, que la densité des nombres premiers $p$ tels que $t^q -p$ soit monogéne est supérieure ou égale à $(q-1)/q$. Nous allons également démontrer que, quand $q=3$, la densité des nombres premiers $p$ tels que $\mathbb{Q}(\sqrt[3]{p})$ soit non monogéne est supérieure ou égale à $1/9$.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a natural representation of solutions for Tikhonov functional equations. This will be done by applying the theory of reproducing kernels to the approximate solutions of general bounded linear operator equations (when defined from reproducing kernel Hilbert spaces into general Hilbert spaces), by using the Hilbert-Schmidt property and tensor product of Hilbert spaces. As a concrete case, we shall consider generalized fractional functions formed by the quotient of Bergman functions by Szegö functions considered from the multiplication operators on the Szegö spaces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In J. Funct. Anal. 257 (2009) 1092-1132, Dykema and Skripka showed the existence of higher order spectral shift functions when the unperturbed self-adjoint operator is bounded and the perturbation is Hilbert-Schmidt. In this article, we give a different proof for the existence of spectral shift function for the third order when the unperturbed operator is self-adjoint (bounded or unbounded, but bounded below).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Let $(X,\mu)$ and $(Y,\nu)$ be standard measure spaces. A function $\nph\in L^\infty(X\times Y,\mu\times\nu)$ is called a (measurable) Schur multiplier if the map $S_\nph$, defined on the space of Hilbert-Schmidt operators from $L_2(X,\mu)$ to $L_2(Y,\nu)$ by multiplying their integral kernels by $\nph$, is bound-ed in the operator norm. The paper studies measurable functions $\nph$ for which $S_\nph$ is closable in the norm topology or in the weak* topology. We obtain a characterisation of w*-closable multipliers and relate the question about norm closability to the theory of operator synthesis. We also study multipliers of two special types: if $\nph$ is of Toeplitz type, that is, if $\nph(x,y)=f(x-y)$, $x,y\in G$, where $G$ is a locally compact abelian group, then the closability of $\nph$ is related to the local inclusion of $f$ in the Fourier algebra $A(G)$ of $G$. If $\nph$ is a divided difference, that is, a function of the form $(f(x)-f(y))/(x-y)$, then its closability is related to the ``operator smoothness'' of the function $f$. A number of examples of non closable, norm closable and w*-closable multipliers are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a quasi-nilpotent injective compact operator with dense range. In articular, this new universal operator invites an approach to the Invariant Subspace Problem that uses properties of operators that commute with the universal operator.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a quasi-nilpotent injective compact operator with dense range. In particular, this new universal operator invites an approach to the Invariant Subspace Problem that uses properties of operators that commute with the universal operator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this paper is to obtain certain characterizations for the image of a Sobolev space on the Heisenberg group under the heat kernel transform. We give three types of characterizations for the image of a Sobolev space of positive order H-m (H-n), m is an element of N-n, under the heat kernel transform on H-n, using direct sum and direct integral of Bergmann spaces and certain unitary representations of H-n which can be realized on the Hilbert space of Hilbert-Schmidt operators on L-2 (R-n). We also show that the image of Sobolev space of negative order H-s (H-n), s(> 0) is an element of R is a direct sum of two weighted Bergman spaces. Finally, we try to obtain some pointwise estimates for the functions in the image of Schwartz class on H-n under the heat kernel transform. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Narrowband spectrograms of voiced speech can be modeled as an outcome of two-dimensional (2-D) modulation process. In this paper, we develop a demodulation algorithm to estimate the 2-D amplitude modulation (AM) and carrier of a given spectrogram patch. The demodulation algorithm is based on the Riesz transform, which is a unitary, shift-invariant operator and is obtained as a 2-D extension of the well known 1-D Hilbert transform operator. Existing methods for spectrogram demodulation rely on extension of sinusoidal demodulation method from the communications literature and require precise estimate of the 2-D carrier. On the other hand, the proposed method based on Riesz transform does not require a carrier estimate. The proposed method and the sinusoidal demodulation scheme are tested on real speech data. Experimental results show that the demodulated AM and carrier from Riesz demodulation represent the spectrogram patch more accurately compared with those obtained using the sinusoidal demodulation. The signal-to-reconstruction error ratio was found to be about 2 to 6 dB higher in case of the proposed demodulation approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

If E and F are real Banach spaces let Cp,q(E, F) O ≤ q ≤ p ≤ ∞, denote those maps from E to F which have p continuous Frechet derivatives of which the first q derivatives are bounded. A Banach space E is defined to be Cp,q smooth if Cp,q(E,R) contains a nonzero function with bounded support. This generalizes the standard Cp smoothness classification.

If an Lp space, p ≥ 1, is Cq smooth then it is also Cq,q smooth so that in particular Lp for p an even integer is C∞,∞ smooth and Lp for p an odd integer is Cp-1,p-1 smooth. In general, however, a Cp smooth B-space need not be Cp,p smooth. Co is shown to be a non-C2,2 smooth B-space although it is known to be C smooth. It is proved that if E is Cp,1 smooth then Co(E) is Cp,1 smooth and if E has an equivalent Cp norm then co(E) has an equivalent Cp norm.

Various consequences of Cp,q smoothness are studied. If f ϵ Cp,q(E,F), if F is Cp,q smooth and if E is non-Cp,q smooth, then the image under f of the boundary of any bounded open subset U of E is dense in the image of U. If E is separable then E is Cp,q smooth if and only if E admits Cp,q partitions of unity; E is Cp,psmooth, p ˂∞, if and only if every closed subset of E is the zero set of some CP function.

f ϵ Cq(E,F), 0 ≤ q ≤ p ≤ ∞, is said to be Cp,q approximable on a subset U of E if for any ϵ ˃ 0 there exists a g ϵ Cp(E,F) satisfying

sup/xϵU, O≤k≤q ‖ Dk f(x) - Dk g(x) ‖ ≤ ϵ.

It is shown that if E is separable and Cp,q smooth and if f ϵ Cq(E,F) is Cp,q approximable on some neighborhood of every point of E, then F is Cp,q approximable on all of E.

In general it is unknown whether an arbitrary function in C1(l2, R) is C2,1 approximable and an example of a function in C1(l2, R) which may not be C2,1 approximable is given. A weak form of C∞,q, q≥1, to functions in Cq(l2, R) is proved: Let {Uα} be a locally finite cover of l2 and let {Tα} be a corresponding collection of Hilbert-Schmidt operators on l2. Then for any f ϵ Cq(l2,F) such that for all α

sup ‖ Dk(f(x)-g(x))[Tαh]‖ ≤ 1.

xϵUα,‖h‖≤1, 0≤k≤q

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Object matching is a fundamental operation in data analysis. It typically requires the definition of a similarity measure between the classes of objects to be matched. Instead, we develop an approach which is able to perform matching by requiring a similarity measure only within each of the classes. This is achieved by maximizing the dependency between matched pairs of observations by means of the Hilbert Schmidt Independence Criterion. This problem can be cast as one of maximizing a quadratic assignment problem with special structure and we present a simple algorithm for finding a locally optimal solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantum teleportation for continuous variables is generally described in phase space by using the Wigner functions. We study quantum teleportation via a mixed two-mode squeezed state in Hilbert-Schmidt space by using the coherent-state representation and operators. This shows directly how the teleported state is related to the original state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chan and Shapiro showed that each (non-trivial) translation operator acting on the Fréchet space of entire functions endowed with the topology of locally uniform convergence supports a universal function of exponential type zero. We show the existence of d-universal functions of exponential type zero for arbitrary finite tuples of pairwise distinct translation operators. We also show that every separable infinite-dimensional Fréchet space supports an arbitrarily large finite and commuting disjoint mixing collection of operators. When this space is a Banach space, it supports an arbitrarily large finite disjoint mixing collection of C0-semigroups. We also provide an easy proof of the result of Salas that every infinite-dimensional Banach space supports arbitrarily large tuples of dual d-hypercyclic operators, and construct an example of a mixing Hilbert space operator T so that (T,T2) is not d-mixing.