37 resultados para Graining.
Resumo:
An experimental and Finite Element study was performed on the bending behaviour of wood beams of the Pinus Pinaster species repaired with adhesively-bonded carbon–epoxy patches, after sustaining damage by cross-grain failure. This damage is characterized by crack growth at a small angle to the beams longitudinal axis, due to misalignment between the wood fibres and the beam axis. Cross-grain failure can occur in large-scale in a wood member when trees that have grown spirally or with a pronounced taper are cut for lumber. Three patch lengths were tested. The simulations include the possibility of cohesive fracture of the adhesive layer, failure within the wood beam in two propagation planes and patch interlaminar failure, by the use of cohesive zone modelling. The respective cohesive properties were estimated either by an inverse method or from the literature. The comparison with the tests allowed the validation of the proposed methodology, opening a good perspective for the reduction of costs in the design stages of these repairs due to extensive experimentation.
Resumo:
The derivation of time evolution equations for slow collective variables starting from a micro- scopic model system is demonstrated for the tutorial example of the classical, two-dimensional XY model. Projection operator techniques are used within a nonequilibrium thermodynamics framework together with molecular simulations in order to establish the building blocks of the hydrodynamics equations: Poisson brackets that determine the deterministic drift, the driving forces from the macroscopic free energy and the friction matrix. The approach is rather general and can be applied for deriving the equations of slow variables for a broad variety of systems.
Resumo:
This thesis studies molecular dynamics simulations on two levels of resolution: the detailed level of atomistic simulations, where the motion of explicit atoms in a many-particle system is considered, and the coarse-grained level, where the motion of superatoms composed of up to 10 atoms is modeled. While atomistic models are capable of describing material specific effects on small scales, the time and length scales they can cover are limited due to their computational costs. Polymer systems are typically characterized by effects on a broad range of length and time scales. Therefore it is often impossible to atomistically simulate processes, which determine macroscopic properties in polymer systems. Coarse-grained (CG) simulations extend the range of accessible time and length scales by three to four orders of magnitude. However, no standardized coarse-graining procedure has been established yet. Following the ideas of structure-based coarse-graining, a coarse-grained model for polystyrene is presented. Structure-based methods parameterize CG models to reproduce static properties of atomistic melts such as radial distribution functions between superatoms or other probability distributions for coarse-grained degrees of freedom. Two enhancements of the coarse-graining methodology are suggested. Correlations between local degrees of freedom are implicitly taken into account by additional potentials acting between neighboring superatoms in the polymer chain. This improves the reproduction of local chain conformations and allows the study of different tacticities of polystyrene. It also gives better control of the chain stiffness, which agrees perfectly with the atomistic model, and leads to a reproduction of experimental results for overall chain dimensions, such as the characteristic ratio, for all different tacticities. The second new aspect is the computationally cheap development of nonbonded CG potentials based on the sampling of pairs of oligomers in vacuum. Static properties of polymer melts are obtained as predictions of the CG model in contrast to other structure-based CG models, which are iteratively refined to reproduce reference melt structures. The dynamics of simulations at the two levels of resolution are compared. The time scales of dynamical processes in atomistic and coarse-grained simulations can be connected by a time scaling factor, which depends on several specific system properties as molecular weight, density, temperature, and other components in mixtures. In this thesis the influence of molecular weight in systems of oligomers and the situation in two-component mixtures is studied. For a system of small additives in a melt of long polymer chains the temperature dependence of the additive diffusion is predicted and compared to experiments.
Resumo:
Die vorliegende Arbeit untersucht den Zusammenhang zwischen Skalen in Systemen weicher Materie, der für Multiskalen-Simulationen eine wichtige Rolle spielt. Zu diesem Zweck wurde eine Methode entwickelt, die die Approximation der Separierbarkeit von Variablen für die Molekulardynamik und ähnliche Anwendungen bewertet. Der zweite und größere Teil dieser Arbeit beschäftigt sich mit der konzeptionellen und technischen Erweiterung des Adaptive Resolution Scheme'' (AdResS), einer Methode zur gleichzeitigen Simulation von Systemen mit mehreren Auflösungsebenen. Diese Methode wurde auf Systeme erweitert, in denen klassische und quantenmechanische Effekte eine Rolle spielen.rnrnDie oben genannte erste Methode benötigt nur die analytische Form der Potentiale, wie sie die meisten Molekulardynamik-Programme zur Verfügung stellen. Die Anwendung der Methode auf ein spezielles Problem gibt bei erfolgreichem Ausgang einen numerischen Hinweis auf die Gültigkeit der Variablenseparation. Bei nicht erfolgreichem Ausgang garantiert sie, dass keine Separation der Variablen möglich ist. Die Methode wird exemplarisch auf ein zweiatomiges Molekül auf einer Oberfläche und für die zweidimensionale Version des Rotational Isomer State (RIS) Modells einer Polymerkette angewandt.rnrnDer zweite Teil der Arbeit behandelt die Entwicklung eines Algorithmus zur adaptiven Simulation von Systemen, in denen Quanteneffekte berücksichtigt werden. Die Quantennatur von Atomen wird dabei in der Pfadintegral-Methode durch einen klassischen Polymerring repräsentiert. Die adaptive Pfadintegral-Methode wird zunächst für einatomige Flüssigkeiten und tetraedrische Moleküle unter normalen thermodynamischen Bedingungen getestet. Schließlich wird die Stabilität der Methode durch ihre Anwendung auf flüssigen para-Wasserstoff bei niedrigen Temperaturen geprüft.
Resumo:
In dieser Arbeit wurden Simulation von Flüssigkeiten auf molekularer Ebene durchgeführt, wobei unterschiedliche Multi-Skalen Techniken verwendet wurden. Diese erlauben eine effektive Beschreibung der Flüssigkeit, die weniger Rechenzeit im Computer benötigt und somit Phänomene auf längeren Zeit- und Längenskalen beschreiben kann.rnrnEin wesentlicher Aspekt ist dabei ein vereinfachtes (“coarse-grained”) Modell, welches in einem systematischen Verfahren aus Simulationen des detaillierten Modells gewonnen wird. Dabei werden ausgewählte Eigenschaften des detaillierten Modells (z.B. Paar-Korrelationsfunktion, Druck, etc) reproduziert.rnrnEs wurden Algorithmen untersucht, die eine gleichzeitige Kopplung von detaillierten und vereinfachten Modell erlauben (“Adaptive Resolution Scheme”, AdResS). Dabei wird das detaillierte Modell in einem vordefinierten Teilvolumen der Flüssigkeit (z.B. nahe einer Oberfläche) verwendet, während der Rest mithilfe des vereinfachten Modells beschrieben wird.rnrnHierzu wurde eine Methode (“Thermodynamische Kraft”) entwickelt um die Kopplung auch dann zu ermöglichen, wenn die Modelle in verschiedenen thermodynamischen Zuständen befinden. Zudem wurde ein neuartiger Algorithmus der Kopplung beschrieben (H-AdResS) der die Kopplung mittels einer Hamilton-Funktion beschreibt. In diesem Algorithmus ist eine zur Thermodynamischen Kraft analoge Korrektur mit weniger Rechenaufwand möglich.rnrnAls Anwendung dieser grundlegenden Techniken wurden Pfadintegral Molekulardynamik (MD) Simulationen von Wasser untersucht. Mithilfe dieser Methode ist es möglich, quantenmechanische Effekte der Kerne (Delokalisation, Nullpunktsenergie) in die Simulation einzubeziehen. Hierbei wurde zuerst eine Multi-Skalen Technik (“Force-matching”) verwendet um eine effektive Wechselwirkung aus einer detaillierten Simulation auf Basis der Dichtefunktionaltheorie zu extrahieren. Die Pfadintegral MD Simulation verbessert die Beschreibung der intra-molekularen Struktur im Vergleich mit experimentellen Daten. Das Modell eignet sich auch zur gleichzeitigen Kopplung in einer Simulation, wobei ein Wassermolekül (beschrieben durch 48 Punktteilchen im Pfadintegral-MD Modell) mit einem vereinfachten Modell (ein Punktteilchen) gekoppelt wird. Auf diese Weise konnte eine Wasser-Vakuum Grenzfläche simuliert werden, wobei nur die Oberfläche im Pfadintegral Modell und der Rest im vereinfachten Modell beschrieben wird.
Resumo:
Mode of access: Internet.
Resumo:
Experimental characterization of molecular details is challenging, and although single molecule experiments have gained prominence, oligomer characterization remains largely unexplored. The ability to monitor the time evolution of individual molecules while they self assemble is essential in providing mechanistic insights about biological events. Molecular dynamics (MD) simulations can fill the gap in knowledge between single molecule experiments and ensemble studies like NMR, and are increasingly used to gain a better understanding of microscopic properties. Coarse-grained (CG) models aid in both exploring longer length and time scale molecular phenomena, and narrowing down the key interactions responsible for significant system characteristics. Over the past decade, CG techniques have made a significant impact in understanding physicochemical processes. However, the realm of peptide-lipid interfacial interactions, primarily binding, partitioning and folding of amphipathic peptides, remains largely unexplored compared to peptide folding in solution. The main drawback of existing CG models is the inability to capture environmentally sensitive changes in dipolar interactions, which are indigenous to protein folding, and lipid dynamics. We have used the Drude oscillator approach to incorporate structural polarization and dipolar interactions in CG beads to develop a minimalistic peptide model, WEPPROM (Water Explicit Polarizable PROtein Model), and a lipid model WEPMEM (Water Explicit Polarizable MEmbrane Model). The addition of backbone dipolar interactions in a CG model for peptides enabled us to achieve alpha-beta secondary structure content de novo, without any added bias. As a prelude to studying amphipathic peptide-lipid membrane interactions, the balance between hydrophobicity and backbone dipolar interactions in driving ordered peptide aggregation in water and at a hydrophobic-hydrophilic interface, was explored. We found that backbone dipole interactions play a crucial role in driving ordered peptide aggregation, both in water and at hydrophobic-hydrophilic interfaces; while hydrophobicity is more relevant for aggregation in water. A zwitterionic (POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and an anionic lipid (POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine) are used as model lipids for WEPMEM. The addition of head group dipolar interactions in lipids significantly improved structural, dynamic and dielectric properties of the model bilayer. Using WEPMEM and WEPPROM, we studied membrane-induced peptide folding of a cationic antimicrobial peptide with anticancer activity, SVS-1. We found that membrane-induced peptide folding is driven by both (a) cooperativity in peptide self interaction and (b) cooperativity in membrane-peptide interactions. The dipolar interactions between the peptide and the lipid head-groups contribute to stabilizing folded conformations. The role of monovalent ion size and peptide concentration in driving lipid domain formation in anionic/zwitterionic lipid mixtures was also investigated. Our study suggest monovalent ion size to be a crucial determinant of interaction with lipid head groups, and hence domain formation in lipid mixtures. This study reinforces the role of dipole interactions in protein folding, lipid membrane properties, membrane induced peptide folding and lipid domain formation. Therefore, the models developed in this thesis can be used to explore a multitude of biomolecular processes, both at longer time-scales and larger system sizes.
Resumo:
We review our work on generalisations of the Becker-Doring model of cluster-formation as applied to nucleation theory, polymer growth kinetics, and the formation of upramolecular structures in colloidal chemistry. One valuable tool in analysing mathematical models of these systems has been the coarse-graining approximation which enables macroscopic models for observable quantities to be derived from microscopic ones. This permits assumptions about the detailed molecular mechanisms to be tested, and their influence on the large-scale kinetics of surfactant self-assembly to be elucidated. We also summarise our more recent results on Becker-Doring systems, notably demonstrating that cross-inhibition and autocatalysis can destabilise a uniform solution and lead to a competitive environment in which some species flourish at the expense of others, phenomena relevant in models of the origins of life.
Resumo:
Molecular simulation provides a powerful tool for connecting molecular-level processes to physical observables. However, the facility to make those connections relies upon the application and development of theoretical methods that permit appropriate descriptions of the systems or processes to be studied. In this thesis, we utilize molecular simulation to study and predict two phenomena with very different theoretical challenges, beginning with (1) lithium-ion transport behavior in polymers and following with (2) equilibrium isotope effects with relevance to position-specific and clumped isotope studies. In the case of ion transport in polymers, there is motivation to use molecular simulation to provide guidance in polymer electrolyte design, but the length and timescales relevant for ion diffusion in polymers preclude the use of direct molecular dynamics simulation to compute ion diffusivities in more than a handful of candidate systems. In the case of equilibrium isotope effects, the thermodynamic driving forces for isotopic fractionation are often fundamentally quantum mechanical in nature, and the high precision of experimental instruments demands correspondingly accurate theoretical approaches. Herein, we describe respectively coarse-graining and path-integral strategies to address outstanding questions in these two subject areas.
Resumo:
Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far.
Resumo:
In the thesis I study various quantum coherence phenomena and create some of the foundations for a systematic coherence theory. So far, the approach to quantum coherence in science has been purely phenomenological. In my thesis I try to answer the question what quantum coherence is and how it should be approached within the framework of physics, the metatheory of physics and the terminology related to them. It is worth noticing that quantum coherence is a conserved quantity that can be exactly defined. I propose a way to define quantum coherence mathematically from the density matrix of the system. Degenerate quantum gases, i.e., Bose condensates and ultracold Fermi systems, form a good laboratory to study coherence, since their entropy is small and coherence is large, and thus they possess strong coherence phenomena. Concerning coherence phenomena in degenerate quantum gases, I concentrate in my thesis mainly on collective association from atoms to molecules, Rabi oscillations and decoherence. It appears that collective association and oscillations do not depend on the spin-statistics of particles. Moreover, I study the logical features of decoherence in closed systems via a simple spin-model. I argue that decoherence is a valid concept also in systems with a possibility to experience recoherence, i.e., Poincaré recurrences. Metatheoretically this is a remarkable result, since it justifies quantum cosmology: to study the whole universe (i.e., physical reality) purely quantum physically is meaningful and valid science, in which decoherence explains why the quantum physical universe appears to cosmologists and other scientists very classical-like. The study of the logical structure of closed systems also reveals that complex enough closed (physical) systems obey a principle that is similar to Gödel's incompleteness theorem of logic. According to the theorem it is impossible to describe completely a closed system within the system, and the inside and outside descriptions of the system can be remarkably different. Via understanding this feature it may be possible to comprehend coarse-graining better and to define uniquely the mutual entanglement of quantum systems.
Resumo:
In this article we review the current status in the modelling of both thermotropic and lyotropic Liquid crystal. We discuss various coarse-graining schemes as well as simulation techniques such as Monte Carlo (MC) and Molecular dynamics (MD) simulations.In the area of MC simulations we discuss in detail the algorithm for simulating hard objects such as spherocylinders of various aspect ratios where excluded volume interaction enters in the simulation through overlap test. We use this technique to study the phase diagram, of a special class of thermotropic liquid crystals namely banana liquid crystals. Next we discuss a coarse-grain model of surfactant molecules and study the self-assembly of the surfactant oligomers using MD simulations. Finally we discuss an atomistically informed coarse-grained description of the lipid molecules used to study the gel to liquid crystalline phase transition in the lipid bilayer system.
Resumo:
Nucleic acids are a useful substrate for engineering at the molecular level. Designing the detailed energetics and kinetics of interactions between nucleic acid strands remains a challenge. Building on previous algorithms to characterize the ensemble of dilute solutions of nucleic acids, we present a design algorithm that allows optimization of structural features and binding energetics of a test tube of interacting nucleic acid strands. We extend this formulation to handle multiple thermodynamic states and combinatorial constraints to allow optimization of pathways of interacting nucleic acids. In both design strategies, low-cost estimates to thermodynamic properties are calculated using hierarchical ensemble decomposition and test tube ensemble focusing. These algorithms are tested on randomized test sets and on example pathways drawn from the molecular programming literature. To analyze the kinetic properties of designed sequences, we describe algorithms to identify dominant species and kinetic rates using coarse-graining at the scale of a small box containing several strands or a large box containing a dilute solution of strands.