257 resultados para Geometrias fractais e geometrias multifractais
Resumo:
Frequency Selective surfaces are increasingly common structures in telecommunication systems due to their geometric and electromagnetic advantages. As a matter of fact, the frequency selective surfaces with fractal geometry type would allow an even bigger reduction of the electrical length which provided greater flexibility in the design of these structures. In this work, we investigated the use of multifractal geometry in frequency selective surfaces. Three structures with different multifractal geometries have been proposed and analyzed. The first structure allowed the design of multiband structures with greater flexibility in controlling the resonant frequencies and bandwidth. The second structure provided a bandwidth increase even with the rising of the fractal level. The third structure showed response with angle stability, dual polarization and provided room for a bandwidth increase with the rising of the structural multifractality. Furthermore, the proposed structures increased the degree of freedom in the multiband designs because they have multiple resonant frequencies ratios between adjacent bands and are easy to deploy. The validation of the proposed structures was initially verified through simulations in Ansoft Designer software and then the structures were constructed and the experimental results obtained
Resumo:
Neste trabalho é descrita a teoria necessária para a obtenção da grandeza denominada intensidade supersônica, a qual tem por objetivo identificar as regiões de uma fonte de ruído que efetivamente contribuem para a potência sonora, filtrando, consequentemente, a parcela referente às ondas sonoras recirculantes e evanescentes. É apresentada a abordagem de Fourier para a obtenção da intensidade supersônica em fontes com geometrias separáveis e a formulação numérica existente para a obtenção de um equivalente à intensidade supersônica em fontes sonoras com geometrias arbitrárias. Este trabalho apresenta como principal contribuição original, uma técnica para o cálculo de um equivalente à intensidade supersônica, denominado aqui de intensidade acústica útil, capaz de identificar as regiões de uma superfície vibrante de geometria arbitrária que efetivamente contribuem para a potência sonora que será radiada. Ao contrário da formulação numérica existente, o modelo proposto é mais direto, totalmente formulado na superfície vibrante, onde a potência sonora é obtida através de um operador (uma matriz) que relaciona a potência sonora radiada com a distribuição de velocidade normal à superfície vibrante, obtida com o uso do método de elementos finitos. Tal operador, chamado aqui de operador de potência, é Hermitiano, fato crucial para a obtenção da intensidade acússtica útil, após a aplicação da decomposição em autovalores e autovetores no operador de potência, e do critério de truncamento proposto. Exemplos de aplicações da intensidade acústica útil em superfícies vibrantes com a geometria de uma placa, de um cilindro com tampas e de um silenciador automotivo são apresentados, e os resultados são comparados com os obtidos via intensidade supersônica (placa) e via técnica numérica existente (cilindro), evidenciando que a intensidade acústica útil traz, como benefício adicional, uma redução em relação ao tempo computacional quando comparada com a técnica numérica existente.
O desenvolvimento do raciocínio dedutivo ao nível do ensino secundário : recurso a geometrias planas
Resumo:
Este trabalho, no âmbito da Didáctica da Matemática, foca-se no estudo de abordagens alternativas de ensino e aprendizagem da Geometria Euclidiana, no Ensino Secundário, no sentido de promover níveis estruturados do pensamento matemático. Em particular, as potencialidades do recurso a outros modelos de Geometria Plana (e.g. Geometria Hiperbólica, Geometria do Motorista de Táxi) em relação a este problema serão investigadas. A opção pelo Ensino Secundário deve-se ao facto de se tratar de um nível de ensino onde se regista uma elevada taxa de insucesso escolar (especialmente no 10º ano) e onde é notório o abismo existente, entre o ensino Secundário e Universitário, no âmbito do raciocínio lógico - dedutivo. O trabalho a desenvolver pretende aprofundar o estudo de questões ligadas à natureza do conhecimento envolvido que estarão na base de decisões, tais como: Quais os processos que vão ser ensinados? Que processos queremos que os alunos dominem? E, por outro lado, ter em conta que se pretende desenvolver capacidades de ordem superior, significando que o ensino da Matemática deve dirigir-se para níveis elevados de pensamento, tais como: resolução de problemas; comunicar matematicamente; raciocínio e demonstração. No currículo de matemática para o Ensino Básico e Secundário tem-se negligenciado a demonstração matemática, contribuindo para que exista uma desconformidade entre os graus de ensino, secundário e universitário. Muitas vezes as abordagens de ensino centram-se na verificação de resultados e desvalorizam a exploração e explicação (Villiers, 1998). Actualmente, assiste-se a uma tendência para retomar o raciocínio lógico - dedutivo. O principal objectivo desta investigação é analisar ambientes de aprendizagem em que os alunos sejam solicitados a resolver problemas de prova em contextos diversificados e, de uma forma mais geral promover o desenvolvimento do raciocínio dedutivo e uma visão mais alargada do conhecimento matemático. Em particular, a abordagem de problemas de prova num contexto de geometria não Euclidiana, com recurso a artefactos e a software de geometria dinâmica, será investigada.
Resumo:
O objetivo deste trabalho é a obtenção de uma técnica para a modelagem otimizada de corpos submetidos a fluxos de alta velocidade, como aerofólios em escoamentos transônicos e outras geometrias aerodinâmicas. A técnica é desenvolvida através de expansões em séries de Fourier para um conjunto de equações diferenciais com interrelação com as condições de contorno, sendo uma equação para a parte superior e outra para a parte inferior do aerofólio. O método de integração temporal empregado baseia-se no esquema explícito de Runge-Kutta de 5 estágios para as equações da quantidade de movimento e na relação de estado para a pressão. Para a aproximação espacial adota-se um esquema em volumes finitos no arranjo co-localizado em diferenças centrais. Utiliza-se dissipação artificial para amortecer as frequências de alta ordem do erro na solução das equações linearizadas. A obra apresenta a solução de escoamentos bi e tridimensionais de fluidos compressíveis transônicos em torno de perfis aerodinâmicos. Os testes num´ericos são realizados para as geometrias do NACA 0012 e 0009 e asas tridimensionais usando as equações de Euler, para número de Mach igual a 0.8 e ® = 0o. Os resultados encontrados comparam favoravelmente com os dados experimentais e numéricos disponíveis na literatura.
Resumo:
Esta dissertação trata da relação entre espaço e memória, investigando como um é capaz de modificar nossa percepção sobre o outro e até que ponto a relação entre memória e espaço é capaz de construir novas narrativas, posteriormente incorporadas à nossa experiência como novos pontos de vista. A pesquisa reconhece um espaço físico, geometricamente mapeável e definido por balizas construídas, a partir do qual estabeleceríamos relações com outros espaços lembrados e atualizados no presente. As questões que propuseram esta investigação partiram de trabalhos desenvolvidos entre 2000 e 2001 e originaram os trabalhos diretamente envolvidos na pesquisa, desenvolvidos entre 2002 e 2004.
Resumo:
The main goal of the present study is to propose a methodological approach to the teaching of Geometry and, in particular, to the construction of the concepts of circle (circumference) and ellipse by 7th and 8th grade students. In order to aid the students in the construction of these concepts, we developed a module based on mathematical modeling, and both Urban Geometry (Taxicab Geometry) and Isoperimetric Geometry. Our analysis was based on Jean Piaget's Equilibrium Theory. Emphasizing the use of intuition based on accumulated past experiences, the students were encouraged to come up with a hypothesis, try it out, discuss it with their peers, and derive conclusions. Although the graphs of circles and ellipses assume different shapes in Urban and Isoperimetric Geometry than they do in the standard Euclidian Geometry, their definitions are identical regardless of the metric used. Thus, by comparing the graphs produced in the different metrics, the students were able to consolidate their understanding of these concepts. The intervention took place in a series of small group activities. At the end of the study, the 53 seventh grade and the 55 eighth grade students had a better understanding of the concepts of circle and ellipse
Resumo:
In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements
Resumo:
This thesis describes design methodologies for frequency selective surfaces (FSSs) composed of periodic arrays of pre-fractals metallic patches on single-layer dielectrics (FR4, RT/duroid). Shapes presented by Sierpinski island and T fractal geometries are exploited to the simple design of efficient band-stop spatial filters with applications in the range of microwaves. Initial results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as, fractal iteration number (or fractal level), fractal iteration factor, and periodicity of FSS, depending on the used pre-fractal element (Sierpinski island or T fractal). The transmission properties of these proposed periodic arrays are investigated through simulations performed by Ansoft DesignerTM and Ansoft HFSSTM commercial softwares that run full-wave methods. To validate the employed methodology, FSS prototypes are selected for fabrication and measurement. The obtained results point to interesting features for FSS spatial filters: compactness, with high values of frequency compression factor; as well as stable frequency responses at oblique incidence of plane waves. This thesis also approaches, as it main focus, the application of an alternative electromagnetic (EM) optimization technique for analysis and synthesis of FSSs with fractal motifs. In application examples of this technique, Vicsek and Sierpinski pre-fractal elements are used in the optimal design of FSS structures. Based on computational intelligence tools, the proposed technique overcomes the high computational cost associated to the full-wave parametric analyzes. To this end, fast and accurate multilayer perceptron (MLP) neural network models are developed using different parameters as design input variables. These neural network models aim to calculate the cost function in the iterations of population-based search algorithms. Continuous genetic algorithm (GA), particle swarm optimization (PSO), and bees algorithm (BA) are used for FSSs optimization with specific resonant frequency and bandwidth. The performance of these algorithms is compared in terms of computational cost and numerical convergence. Consistent results can be verified by the excellent agreement obtained between simulations and measurements related to FSS prototypes built with a given fractal iteration
Resumo:
This present research the aim to show to the reader the Geometry non-Euclidean while anomaly indicating the pedagogical implications and then propose a sequence of activities, divided into three blocks which show the relationship of Euclidean geometry with non-Euclidean, taking the Euclidean with respect to analysis of the anomaly in non-Euclidean. PPGECNM is tied to the line of research of History, Philosophy and Sociology of Science in the Teaching of Natural Sciences and Mathematics. Treat so on Euclid of Alexandria, his most famous work The Elements and moreover, emphasize the Fifth Postulate of Euclid, particularly the difficulties (which lasted several centuries) that mathematicians have to understand him. Until the eighteenth century, three mathematicians: Lobachevsky (1793 - 1856), Bolyai (1775 - 1856) and Gauss (1777-1855) was convinced that this axiom was correct and that there was another geometry (anomalous) as consistent as the Euclid, but that did not adapt into their parameters. It is attributed to the emergence of these three non-Euclidean geometry. For the course methodology we started with some bibliographical definitions about anomalies, after we ve featured so that our definition are better understood by the readers and then only deal geometries non-Euclidean (Hyperbolic Geometry, Spherical Geometry and Taxicab Geometry) confronting them with the Euclidean to analyze the anomalies existing in non-Euclidean geometries and observe its importance to the teaching. After this characterization follows the empirical part of the proposal which consisted the application of three blocks of activities in search of pedagogical implications of anomaly. The first on parallel lines, the second on study of triangles and the third on the shortest distance between two points. These blocks offer a work with basic elements of geometry from a historical and investigative study of geometries non-Euclidean while anomaly so the concept is understood along with it s properties without necessarily be linked to the image of the geometric elements and thus expanding or adapting to other references. For example, the block applied on the second day of activities that provides extend the result of the sum of the internal angles of any triangle, to realize that is not always 180° (only when Euclid is a reference that this conclusion can be drawn)
Resumo:
The fractal and multifractal approaches in the geographical analysis. This paper results from a bibliographical research showing the applications of the fractal and multifractal approaches in the geographical studies. At first describes some text books about fractals and, after, focuses the works did concerned with Physical Geography, Meteorology, Climatology, Geomorphology, Pedology and Human Geography.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Dissertação para obtenção do grau de Mestre em Arquitectura com Especialização em Urbanismo, apresentada na Universidade de Lisboa - Faculdade de Arquitectura.