984 resultados para Geometria integral


Relevância:

100.00% 100.00%

Publicador:

Resumo:

En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We obtain a new series of integral formulae for symmetric functions of curvature of a distribution of arbitrary codimension (an its orthogonal complement) given on a compact Riemannian manifold, which start from known formula by P.Walczak (1990) and generalize ones for foliations by several authors: Asimov (1978), Brito, Langevin and Rosenberg (1981), Brito and Naveira (2000), Andrzejewski and Walczak (2010), etc. Our integral formulae involve the co-nullity tensor, certain component of the curvature tensor and their products. The formulae also deal with a number of arbitrary functions depending on the scalar invariants of the co-nullity tensor. For foliated manifolds of constant curvature the obtained formulae give us the classical type formulae. For a special choice of functions our formulae reduce to ones with Newton transformations of the co-nullity tensor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shape complexity has recently received attention from different fields, such as computer vision and psychology. In this paper, integral geometry and information theory tools are applied to quantify the shape complexity from two different perspectives: from the inside of the object, we evaluate its degree of structure or correlation between its surfaces (inner complexity), and from the outside, we compute its degree of interaction with the circumscribing sphere (outer complexity). Our shape complexity measures are based on the following two facts: uniformly distributed global lines crossing an object define a continuous information channel and the continuous mutual information of this channel is independent of the object discretisation and invariant to translations, rotations, and changes of scale. The measures introduced in this paper can be potentially used as shape descriptors for object recognition, image retrieval, object localisation, tumour analysis, and protein docking, among others

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shape complexity has recently received attention from different fields, such as computer vision and psychology. In this paper, integral geometry and information theory tools are applied to quantify the shape complexity from two different perspectives: from the inside of the object, we evaluate its degree of structure or correlation between its surfaces (inner complexity), and from the outside, we compute its degree of interaction with the circumscribing sphere (outer complexity). Our shape complexity measures are based on the following two facts: uniformly distributed global lines crossing an object define a continuous information channel and the continuous mutual information of this channel is independent of the object discretisation and invariant to translations, rotations, and changes of scale. The measures introduced in this paper can be potentially used as shape descriptors for object recognition, image retrieval, object localisation, tumour analysis, and protein docking, among others

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho, foi construída uma forma integral para a solução das equações de transporte em uma, duas e três dimensões, considerando o núcleo de espalhamento de Klein-Nishina, espalhamento isotrópico e o núcleo de espalhamento de Rutherford, respectivamente, seguindo a mesma idéia proposta em trabalhos recentes, nos quais foi construída uma solução para a equação de transporte de nêutrons em geometria cartesiana, usando derivada fracionária. A metodologia consiste em igualar a derivada fracionária do fluxo angular à equação integral, determinar a ordem da derivada fracionária comparando o núcleo da equação integral com o da definição de Riemann-Liouville. Essa formulação foi aplicada ao cálculo de dose absorvida. São apresentadas soluções geradas a partir do emprego do método da derivada fracionária e comparadas a resultados disponíveis na literatura.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho são investigados problemas formulados em geometria cilíndrica na área da dinâmica de gases rarefeitos bem como na área de transferência radiativa. Com relação á dinâmica de gases rarefeitos, primeiramente são abordadas duas formas diferenciadas de se avaliar numericamente as funções de Chapmann-Enskog e de Burnett, necessárias na composição de soluções gerais nessa geometria. Em seguida é apresentada a derivação de uma equação integral baseada no modelo BGK para descrever o fluxo de um gás rarefeito em um tubo cilíndrico. Problemas relacionados á transferência radiativa, incluindo o caso não-linear acoplado radiação-condução, são solucionados com a aplicação de uma versão reformulada do método de ordenadas discretas, sendo que resultados numéricos relevantes a estes problemas são também apresentados.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Os métodos numéricos de Elementos Finitos e Equação Integral são comumente utilizados para investigações eletromagnéticas na Geofísica, e, para essas modelagens é importante saber qual algoritmo é mais rápido num certo modelo geofísico. Neste trabalho são feitas comparações nos resultados de tempo computacional desses dois métodos em modelos bidimensionais com heterogeneidades condutivas num semiespaço resistivo energizados por uma linha infinita de corrente (com 1000Hz de freqüência) e situada na superfície paralelamente ao "strike" das heterogeneidades. Após a validação e otimização dos programas analisamos o comportamento dos tempos de processamento nos modelos de corpos retangulares variandose o tamanho, o número e a inclinação dos corpos. Além disso, investigamos nesses métodos as etapas que demandam maior custo computacional. Em nossos modelos, o método de Elementos Finitos foi mais vantajoso que o de Equação Integral, com exceção na situação de corpos com baixa condutividade ou com geometria inclinada.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this work is to perform a historical approach of important results about maxima and minima, on Euclidean geometry, involving perimeters, areas and volumes. As a highlight, we can mention the Dido’s isoperimetric problem and the Papus’s problem about the wit of the bees. In this context, with a concern didactic, we tried to use, whenever possible, the geometry classical formulas to the calculus of areas. On the other hand, in the case of isoperimetric inequality the techniques of differential and integral calculus became more suitable for our purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O presente trabalho realiza um estudo referente à Geometria Tridimensional, no que tange a sua metodologia apresentada nos livros didáticos de Matemática. Esse instrumento tem passado por um processo de avaliação mais rigoroso nas últimas décadas pelos órgãos governamentais para a promoção do livro com qualidade o que é importante, porém uma análise crítica de seus conteúdos é essencial para que esse instrumento torne-se adequado a cada realidade e um aliado no planejamento do educador no processo de ensino e aprendizagem da Geometria. Essa disciplina é considerada por vários autores e especialista da educação como um conhecimento muito pertinente para a formação integral do aluno, ao proporcionar o desenvolvimento do raciocínio visual, espacial e lógico, abrangendo também a formação cultural e profissional. Nesse sentido, considerando a importância da escolha de um livro adequado e coerente para a qualidade desse ensino, objetivouse com esse estudo realizar uma análise e reflexão sobre os conteúdos da Geometria Tridimensional apresentada em dois livros didáticos de matemática do 5º ano do ensino fundamental submetidos aos critérios eliminatórios do Programa Nacional do Livro Didático - PNLD (2013) e aprovado pelo Ministério da Educação. Mediante levantamento bibliográfico da literatura pertinente e análise de documentos oficiais foi possível verificar que os mesmos apresentaram progressos em alguns aspectos atendendo de forma parcial as propostas atuais para esse ensino demonstrando que ainda precisam evoluir

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoactuators consist of compliant mechanisms actuated by two or more piezoceramic devices. During the assembling process, such flexible structures are usually bonded to the piezoceramics. The thin bonding layer(s) between the compliant mechanism and the piezoceramic may induce undesirable behavior, including unusual interfacial nonlinearities. This constitutes a drawback of piezoelectric actuators and, in some applications, such as those associated to vibration control and structural health monitoring (e. g., aircraft industry), their use may become either unfeasible or at least limited. A possible solution to this standing problem can be achieved through the functionally graded material concept and consists of developing `integral piezoactuators`, that is those with no bonding layer(s) and whose performance can be improved by tailoring their structural topology and material gradation. Thus, a topology optimization formulation is developed, which allows simultaneous distribution of void and functionally graded piezoelectric materials (including both piezo and non-piezoelectric materials) in the design domain in order to achieve certain specified actuation movements. Two concurrent design problems are considered, that is the optimum design of the piezoceramic property gradation, and the design of the functionally graded structural topology. Two-dimensional piezoactuator designs are investigated because the applications of interest consist of planar devices. Moreover, material gradation is considered in only one direction in order to account for manufacturability issues. To broaden the range of such devices in the field of smart structures, the design of integral Moonie-type functionally graded piezoactuators is provided according to specified performance requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose quadrature rules for the approximation of line integrals possessing logarithmic singularities and show their convergence. In some instances a superconvergence rate is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.