956 resultados para Fish protein hydrolysate
Resumo:
Growth and survival rates of pacu, Piaractus mesopotamicus, larvae fed prepared diets containing different animal protein sources were evaluated. Four diets with the same level of crude protein (CP) (36%) and calories (4.02 kcal gross energy/g of diet) were fed to the larvae. Diets were formulated to contain one of four protein sources: (1) fish meal (FM), (2) tilapia residue silage (TS), (3) protein hydrolysate from tilapia residue (HT), and (4) eviscerated tilapia residue (HET). Larvae were fed Artemia nauplii for six days, prior to the start of the study, and the prepared diet was supplied from day 7 until the study concluded. Variance analysis showed no significant differences (P > 0.05) for survival rates and larval final lengths among treatments. However, final average weights were significantly different (P < 0.05 for larvae fed FM and HT. Average survival rates were relatively high and ranged from 68.1% to 73.9%. After the live food was replaced by prepared diets, no larval growth was observed for any treatment. Fish protein hydrolysate (HT and HET) and fish silage showed potential to be used as ingredients in the diet of pacu larvae. However, hydrolysate inclusion levels, processing methods to minimize nutrient lixiviation, and the best moment to replace live food with an inert diet (weaning) need further investigation. © 2003 by The Haworth Press, Inc. All rights reserved.
Resumo:
A method to prepare fish protein hydrolysate from miscellaneous fish obtained as by catch from shrimp trawlers is outlined. Effect of temperature and concentration of enzyme papain on the yield of hydrolysates has been determined. It is seen that within 30 min at 55°C and pH 6.5 fish proteins can be effectively solubilized, provided the nitrogen content of the enzyme (activity 10 units/mg enzyme) and substrate are maintained in the ratio 1:30. This hydrolysate possesses the best amino acid pattern compared to those obtained after hydrolysis for 60 to 180 min.
Resumo:
The paper deals with the method of preparation of an edible fish protein concentrate from cheap miscellaneous fish. The method consists in cooking the fish with 0.5% glacial acetic acid, and extracting batch—wise, using ethyl alcohol followed by an azeotropic mixture of hexane and alcohol (B. Pt. 58-68°C). The product is finally vacuum dried during which the residual solvent is also removed. The concentrate prepared by this method contains 85% protein of which 96% is pepsin digestible. The product is practically odorless and almost white in color.
Resumo:
This communication deals with the design aspect and functions of individual pieces of equipment of a pilot plant of fifty kg capacity for the production of fish protein concentrate (FPC) per day. Design is based on a solvent extraction process of wet pressed cake with an azeotropic mixture of hexane and ethyl alcohol. A flow sheet for the process and equipment layout has been indicated.
Resumo:
This paper deals with the investigations carried out on the preparation and storage characteristics of protein enriched biscuits (sweet and salt), incorporated with partially de-odourised fish protein concentrate. The product contains more than 20% protein and has storage life exceeding 6 months at room temperature (21°C to 32°C), in 400 gauge polythene bags.
Resumo:
Fish protein concentrate and functional fish protein concentrate samples were prepared from eviscerated meat of cat fish (Tachysurus jella Day). Functional fish protein concentrate is found to be lighter, less gritty and rehydrates more rapidly than fish protein concentrate. Functional FPC is seen to have higher PER and biscuits containing it at levels of 5 and 7 percent are less hard compared to FPC.
Resumo:
The paper reviews the work reported on the changes in the nutritive value of fish protein concentrates (FPC) during, storage, with special emphasis on the effects of the interactions between oxidised residual lipids and proteins of the FPC. Theories on the oxidised lipid-protein interactions are reviewed and the nutritional significance of these reactions is discussed.
Resumo:
Protein arginine methyltransferase 1 (PRMT1) is currently thought as an effector to regulate interferon (IFN) signalling. Here Paralichthys olivaceus PRMT1 (PoPRMT1) gene was identified as a vitally induced gene from UV-inactivated Scophthalmus maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). PoPMRT1 encodes a 341-amino-acid protein that shares the conserved domains including post-I, motif I, II and III. Homology comparisons show that the putative PoPMRT1 protein is the closest to zebrafish PMRT1 and belongs to type I PRMT family (including PRMT1, PRMT2, PRMT3, PRMT4, PRMT6, PRMT8). Expression analyses revealed an extensive distribution of PoPMRT1 in all tested tissues of flounder. In vitro induction of PoPRMT1 was determined in UV-inactivated SMRV-infected FEC cells, and under the same conditions, flounder Mx wash also transcriptionally up-regulated, indicating that an IFN response might be triggered. Additionally, live SMRV infection of flounders induced an increased expression of PoPRMT1 mRNA and protein significantly in spleen, and to a lesser extent in head kidney and intestine. Immunofluorescence analysis revealed a major cyptoplasmic distribution of PoPRMT1 in normal FEC but an obvious increase occurred in nucleus in response to UV-inactivated SMRV. This is the first report on in vitro and in vivo expression of fish PRMT1 by virus infection, suggesting that PoPRMT1 might be implicated in flounder antiviral immune response. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Accumulation rate of dissolved organic matter (DOM) by natural populations varies over a wide range. In the surface layer of the Black Sea accumulation rate of glucose is 0.6-4.82 mg C/m**3 per day, and in the Atlantic Ocean 1.15-12.38 mg C/m**3 per day. This rate is 2-17 times higher when hydrolysate is added to the medium. Accumulation rate of glucose and hydrolysate in the aphotic layer of the Black Sea and the Atlantic Ocean is 1.5-6 times lower than at the surface. The organotrophic coefficient also varied within wide range. Relative amount of DOM used by microorganisms for growth in total production is much less (0.6-39.9%) in areas of intensive photosynthesis than in waters poor in DOM (83.7-99.2%).