942 resultados para Extremal polynomial ultraspherical polynomials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For any positive integer n, the sine polynomials that are nonnegative in [0, π] and which have the maximal derivative at the origin are determined in an explicit form. Associated cosine polynomials Kn (θ) are constructed in such a way that {Kn(θ)} is a summability kernel. Thus, for each Pi 1 ≤ P ≤ ∞ and for any 27π-periodic function f ∈ Lp [-π, π], the sequence of convolutions Kn * f is proved to converge to f in Lp[-ππ]. The pointwise and almost everywhere convergences are also consequences of our construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F, satisfying the following property: for every monic polynomial f (x) = x(n) + a(n-1)x(n-1) +... + a(1)x + a(0) over F, with a root in F and a(0) = (-1)(n) det(AB), there are nonsingular matrices X, Y is an element of F-nxn such that XAX(-1)Y BY-1 has characteristic polynomial f (x).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Dissertation präsentieren wir zunächst eine Verallgemeinerung der üblichen Sturm-Liouville-Probleme mit symmetrischen Lösungen und erklären eine umfassendere Klasse. Dann führen wir einige neue Klassen orthogonaler Polynome und spezieller Funktionen ein, welche sich aus dieser symmetrischen Verallgemeinerung ableiten lassen. Als eine spezielle Konsequenz dieser Verallgemeinerung führen wir ein Polynomsystem mit vier freien Parametern ein und zeigen, dass in diesem System fast alle klassischen symmetrischen orthogonalen Polynome wie die Legendrepolynome, die Chebyshevpolynome erster und zweiter Art, die Gegenbauerpolynome, die verallgemeinerten Gegenbauerpolynome, die Hermitepolynome, die verallgemeinerten Hermitepolynome und zwei weitere neue endliche Systeme orthogonaler Polynome enthalten sind. All diese Polynome können direkt durch das neu eingeführte System ausgedrückt werden. Ferner bestimmen wir alle Standardeigenschaften des neuen Systems, insbesondere eine explizite Darstellung, eine Differentialgleichung zweiter Ordnung, eine generische Orthogonalitätsbeziehung sowie eine generische Dreitermrekursion. Außerdem benutzen wir diese Erweiterung, um die assoziierten Legendrefunktionen, welche viele Anwendungen in Physik und Ingenieurwissenschaften haben, zu verallgemeinern, und wir zeigen, dass diese Verallgemeinerung Orthogonalitätseigenschaft und -intervall erhält. In einem weiteren Kapitel der Dissertation studieren wir detailliert die Standardeigenschaften endlicher orthogonaler Polynomsysteme, welche sich aus der üblichen Sturm-Liouville-Theorie ergeben und wir zeigen, dass sie orthogonal bezüglich der Fisherschen F-Verteilung, der inversen Gammaverteilung und der verallgemeinerten t-Verteilung sind. Im nächsten Abschnitt der Dissertation betrachten wir eine vierparametrige Verallgemeinerung der Studentschen t-Verteilung. Wir zeigen, dass diese Verteilung gegen die Normalverteilung konvergiert, wenn die Anzahl der Stichprobe gegen Unendlich strebt. Eine ähnliche Verallgemeinerung der Fisherschen F-Verteilung konvergiert gegen die chi-Quadrat-Verteilung. Ferner führen wir im letzten Abschnitt der Dissertation einige neue Folgen spezieller Funktionen ein, welche Anwendungen bei der Lösung in Kugelkoordinaten der klassischen Potentialgleichung, der Wärmeleitungsgleichung und der Wellengleichung haben. Schließlich erklären wir zwei neue Klassen rationaler orthogonaler hypergeometrischer Funktionen, und wir zeigen unter Benutzung der Fouriertransformation und der Parsevalschen Gleichung, dass es sich um endliche Orthogonalsysteme mit Gewichtsfunktionen vom Gammatyp handelt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, sharp upper limit for the zeros of the ultraspherical polynomials are obtained via a result of Obrechkoff and certain explicit connection coefficients for these polynomials. As a consequence, sharp bounds for the zeros of the Hermite polynomials are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radial part of the Schrodinger Equation for the H-atom's electron involves Laguerre polynomials, hence this introduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 11T06, 13P10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to explicitly describe in terms of generators and relations the universal central extension of the infinite dimensional Lie algebra, g circle times C[t, t(-1), u vertical bar u(2) = (t(2) - b(2))(t(2) - c(2))], appearing in the work of Date, Jimbo, Kashiwara and Miwa in their study of integrable systems arising from the Landau-Lifshitz differential equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Generalized Bessel polynomials (GBPs) are characterized as the extremal polynomials in certain inequalities in L-2 norm of Markov type. (C) 1998 Academic Press.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we present a generic formula for the polynomial solution families of the well-known differential equation of hypergeometric type s(x)y"n(x) + t(x)y'n(x) - lnyn(x) = 0 and show that all the three classical orthogonal polynomial families as well as three finite orthogonal polynomial families, extracted from this equation, can be identified as special cases of this derived polynomial sequence. Some general properties of this sequence are also given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let 0polynomials of degree not exceeding n).For the particular case j=1 and m=2, we provide a complete characterisation of the positive constants A and B, for which the corresponding Landau type polynomial inequalities parallel to f'parallel to less than or equal toA parallel to f parallel to + B parallel to f parallel to/ A theta(k) + B mu(k)hold. In each case we determine the corresponding extremal polynomials for which equalities are attained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We establish sufficient conditions for a matrix to be almost totally positive, thus extending a result of Craven and Csordas who proved that the corresponding conditions guarantee that a matrix is strictly totally positive. Then we apply our main result in order to obtain a new criteria for a real algebraic polynomial to be a Hurwitz one. The properties of the corresponding extremal Hurwitz polynomials are discussed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Denote by x(n,k)(alpha, beta) and x(n,k) (lambda) = x(n,k) (lambda - 1/2, lambda - 1/2) the zeros, in decreasing order, of the Jacobi polynomial P-n((alpha, beta))(x) and of the ultraspherical (Gegenbauer) polynomial C-n(lambda)(x), respectively. The monotonicity of x(n,k)(alpha, beta) as functions of a and beta, alpha, beta > - 1, is investigated. Necessary conditions such that the zeros of P-n((a, b)) (x) are smaller (greater) than the zeros of P-n((alpha, beta))(x) are provided. A. Markov proved that x(n,k) (a, b) < x(n,k)(α, β) (x(n,k)(a, b) > x(n,k)(alpha, beta)) for every n is an element of N and each k, 1 less than or equal to k less than or equal to n if a > alpha and b < β (a < alpha and b > beta). We prove the converse statement of Markov's theorem. The question of how large the function could be such that the products f(n)(lambda) x(n,k)(lambda), k = 1,..., [n/2] are increasing functions of lambda, for lambda > - 1/2, is also discussed. Elbert and Siafarikas proved that f(n)(lambda) = (lambda + (2n(2) + 1)/ (4n + 2))(1/2) obeys this property. We establish the sharpness of their result. (C) 2002 Elsevier B.V. (USA).