Almost strict total positivity and a class of Hurwitz polynomials
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/02/2005
|
Resumo |
We establish sufficient conditions for a matrix to be almost totally positive, thus extending a result of Craven and Csordas who proved that the corresponding conditions guarantee that a matrix is strictly totally positive. Then we apply our main result in order to obtain a new criteria for a real algebraic polynomial to be a Hurwitz one. The properties of the corresponding extremal Hurwitz polynomials are discussed. (C) 2004 Elsevier B.V. All rights reserved. |
Formato |
212-223 |
Identificador |
http://dx.doi.org/10.1016/j.jat.2004.10.010 Journal of Approximation Theory. San Diego: Academic Press Inc. Elsevier B.V., v. 132, n. 2, p. 212-223, 2005. 0021-9045 http://hdl.handle.net/11449/21728 10.1016/j.jat.2004.10.010 WOS:000227196700004 WOS000227196700004.pdf |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Journal of Approximation Theory |
Direitos |
openAccess |
Palavras-Chave | #totally positive matrix #strictly totally positive matrix #shadows' lemma #Hurwitz polynomial #entire function in the Laguerre-Polya class |
Tipo |
info:eu-repo/semantics/article |