968 resultados para Equação de Christoffel generalizada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensos estudos realizados nas últimas décadas sobre a propagação de ondas ultrassônicas em sólidos levaram ao desenvolvimento de técnicas não destrutivas para a avaliação da segurança e integridade de estruturas e componentes industriais. O interesse na aplicação de técnicas ultrassônicas para medição de tensões aplicadas e residuais decorre da mudança mensurável da velocidade das ondas ultrassônicas na presença de um campo de tensões, fenômeno conhecido como efeito acustoelástico. Uma teoria de acustoelasticidade fornece um meio atrativo e não destrutivo de medir a tensão média ao longo do caminho percorrido pela onda. O estudo da propagação das ondas ultrassônicas em meios homogêneos anisotrópicos sob tensão conduz a um problema não linear de autovalores dado pela equação de Christoffel generalizada. A característica não linear deste problema decorre da interdependência entre as constantes elásticas efetivas do material e as tensões atuantes. A medição experimental de tensões por técnicas ultrassônicas é um problema inverso da acustoelasticidade. Esta dissertação apresenta a implementação de um algoritmo numérico, baseado no método proposto por Degtyar e Rokhlin, para solução do problema inverso da acustoelasticidade em sólidos ortotrópicos sujeitos a um estado plano de tensões. A solução da equação de Christoffel generalizada apresenta dificuldades de natureza numérica e prática. A estabilidade e a precisão do algoritmo desenvolvido, bem como a influência das incertezas na medição experimental das velocidades das ondas ultrassônicas, foram então investigadas. Dados sintéticos para as velocidades das ondas ultrassônicas de incidência oblíqua em uma placa sujeita a um estado plano de tensões foram gerados pela solução direta da equação de Christoffel generalizada para ilustrar a aplicação do algoritmo desenvolvido. O objetivo maior desta dissertação é a disponibilização de uma nova ferramenta de cálculo para suporte às atividades experimentais de medição de tensões por ultrassom no país.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

É conhecido que derivações microscópicas obtidas através de métodos de teoria quântica de campos (TQC) podem conduzir a complicadas equações de movimento (EdM) que possuem um termo dissipativo com memória e um termo de ruído colorido. Um caso particularmente interessante é o modelo que escreve a interação entre um sistema e um banho térmico a temperatura T. Motivado por isso, usamos uma prescrição que nos permite reescrever EdMs não-markovianas semelhantes as obtidas em TQC em termos de um sistema de equações locais, para então confrontarmos a solução desse sistema com a solução aproximada usada correntemente na literatura, a chamada aproximação markoviana. A pergunta chave a qual se pretende responder aqui é: dado um conjunto de parâmetros que descrevem o modelo, a aproximação markoviana é suficientemente boa para descrever a dinâmica do sistema se comparada a dinâmica obtida atravéS da EdM não-markoviana? Além disso, consideramos uma versão linear da ELG de forma que pudéssemos determinar o nível de confiança da nossa metodologia numérica, procedimento este realizado comparando-se a solução analítica com a solução numérica. Como exemplo de aplicação prática do tema discutido aqui, comparamos a evolução não-markoviana do inflaton com a evolução markoviana do mesmo num modelo de universo primordial denominado inflação não-isentrópica (warm inflation).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The standard kinetic theory for a nonrelativistic diluted gas is generalized in the spirit of the nonextensive statistic distribution introduced by Tsallis. The new formalism depends on an arbitrary q parameter measuring the degree of nonextensivity. In the limit q = 1, the extensive Maxwell-Boltzmann theory is recovered. Starting from a purely kinetic deduction of the velocity q-distribution function, the Boltzmann H-teorem is generalized for including the possibility of nonextensive out of equilibrium effects. Based on this investigation, it is proved that Tsallis' distribution is the necessary and sufficient condition defining a thermodynamic equilibrium state in the nonextensive context. This result follows naturally from the generalized transport equation and also from the extended H-theorem. Two physical applications of the nonextensive effects have been considered. Closed analytic expressions were obtained for the Doppler broadening of spectral lines from an excited gas, as well as, for the dispersion relations describing the eletrostatic oscillations in a diluted electronic plasma. In the later case, a comparison with the experimental results strongly suggests a Tsallis distribution with the q parameter smaller than unity. A complementary study is related to the thermodynamic behavior of a relativistic imperfect simple fluid. Using nonequilibrium thermodynamics, we show how the basic primary variables, namely: the energy momentum tensor, the particle and entropy fluxes depend on the several dissipative processes present in the fluid. The temperature variation law for this moving imperfect fluid is also obtained, and the Eckart and Landau-Lifshitz formulations are recovered as particular cases

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work aims to study several diffusive regimes, especially Brownian motion. We deal with problems involving anomalous diffusion using the method of fractional derivatives and fractional integrals. We introduce concepts of fractional calculus and apply it to the generalized Langevin equation. Through the fractional Laplace transform we calculate the values of diffusion coefficients for two super diffusive cases, verifying the validity of the method

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estudamos o problema de Dirichlet para a equação das superfícies mínimas em domínios limitados do plano. Provamos a existência e unicidade de gráficos mínimos sobre domínios limitados e não necessariamente convexos, com valores no bordo satisfazendo uma condição que denominamos condição da declividade limitada generalizada a qual, usando cilindros no lugar de planos, generaliza a condição clássica da declividade limitada. Com este resultado, dado um domínio limitado e suave qualquer do plano, conseguimos obter cotas explícitas para a norma C2 de dados no bordo deste domínio que garantem a existência de solução ao correspondente problema de Dirichlet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho se propõe um avanço para a Técnica Transformada Integral Generalizada, GITT. O problema transformado, usualmente resolvido por subrotinas numéricas, é aqui abordado analiticamente fazendo-se uso da Transformada de Laplace. Para exemplificar o uso associado destas duas transformadas integrais, resolvem-se dois problemas. Um de concentração de poluentes na atmosfera e outro de convecção forçada com escoamento laminar, entre placas planas paralelas, com desenvolvimento simultâneo dos perfis térmico e hidrodinâmico. O primeiro é difusivo, transiente e com coeficientes variáveis. Sua solução é obtida de forma totalmente analítica. Além de mostrar o uso da técnica, este exemplo apesar de ter coeficientes variáveis, é resolvido com o auxílio de um problema de autovalores associado com coeficientes constantes. No segundo, obtém-se a solução da Equação da Energia analiticamente. Já a Equação da Conservação do Momentum é linearizada e resolvida de forma iterativa. A solução de cada iteração é obtida analiticamente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O objetivo deste trabalho é obter uma nova solução analítica para a equação de advecção-difusão. Para tanto, considera-se um problema bidimensional difusivo-advectivo estacionário com coeficiente de difusão turbulenta vertical variável que modela a dispersão de poluentes na atmosfera. São utilizados três coeficientes difusivos válidos na camada limite convectiva e que dependem da altura, da distância da fonte e do perfil de velocidade. A abordagem utilizada para a resolução do problema é a técnica da Transformada Integral Generalizada, na qual a equação transformada do problema difusivo-advectivo é resolvida pela técnica da Transformada de Laplace com inversão analítica. Nenhuma aproximação é feita durante a derivação da solução, sendo assim, esta é exata exceto pelo erro de truncamento. O modelo ´e avaliado em condições moderadamente instáveis usando o experimento de Copenhagen. Apresentam-se os resultados numéricos e estatísticos, comparando os resultados obtidos com dados experimentais e com os resultados da literatura. O modelo proposto mostrou-se satisfatório em relação aos dados dos experimentos difusivos considerados.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Biofísica Molecular - IBILCE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho consiste na solução híbrida da Equação de Advecção-dispersão de solutos unidimensional em meios porosos homogêneos ou heterogêneos, para um único componente, com coeficientes de retardo, dispersão, velocidade média, decaimento e produção dependentes da distância percorrida pelo soluto. Serão estudados os casos de dispersão-advecção em que o retardamento, dispersão, velocidade do fluxo, decaimento e produção variem de forma linear enquanto a dispersividade assuma os modelos linear, parabólico ou exponencial. Para a solução da equação foi aplicada a Técnica da Transformada Integral Generalizada. Os resultados obtidos nesta dissertação demonstram boa concordância entre os problemas-exemplo e suas soluções numéricas ou analíticas contidas na literatura e apontam uma melhor adequação no uso de modelos parabólico no estudo da advecção-dispersão em curto intervalo de tempo, enquanto que o modelo linear converge mais rapidamente em tempos prolongados de simulação. A convergência da série mostrou-se ter dependência direta quanto ao comprimento do domínio, ao modelo de dispersão e da dispersividade adotada, convergindo com até 60 termos, podendo chegar a NT = 170, para os casos heterogêneos, utilizando o modelo de dispersão exponencial, respeitando o critério adotado de 10-4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new numerical integration technique oil arbitrary polygonal domains. The polygonal domain is mapped conformally to the unit disk using Schwarz-Christoffel mapping and a midpoint quadrature rule defined oil this unit disk is used. This method eliminates the need for a two-level isoparametric mapping Usually required. Moreover, the positivity of the Jacobian is guaranteed. Numerical results presented for a few benchmark problems in the context of polygonal finite elements show that the proposed method yields accurate results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste estudo foi verificar se o tratamento periodontal não cirúrgico exercia alguma influência sobre o perfil lipídico, os elementos celulares das séries banca e vermelha do sangue, plaquetas e VHS de pacientes portadores de periodontite crônica generalizada. Dezoito pacientes, com média de idade de 50,6 anos ( 7,6), foram submetidos, previamente ao tratamento periodontal e 30 dias após o mesmo, à coleta de 10ml de sangue periférico, através do qual foram analisados o perfil lipídico, os elementos celulares das séries branca e vermelha, o número de plaquetas e VHS. Destes 18 pacientes, 7, com média de idade de 47,4 anos ( 5,9) também foram reavaliados 90 dias após o término do tratamento. Os parâmetros clínicos utilizados, previamente ao tratamento e nas reavaliações, foram o Índice de Placa (IP), de Silness e Löe (1964), o Índice Gengival (IG), de Löe (1967), Sangramento na Sondagem (SS), Profundidade de Bolsa à Sondagem (PBS) e Nível de Inserção (NI). Foram ainda registrados e classificados os sítios com envolvimento de furca. O tratamento periodontal consistiu de terapia básica não cirúrgica. Após 30 dias do término do tratamento periodontal todos os pacientes foram reavaliados sendo verificada melhora significativa (P<0,05) dos valores de IP, IG, SS e PBS e de NI ≥ 6mm (P=0,05). Sítios com envolvimento de furca classes II e III apresentaram também diminuição significativa (P=0,01). Os 7 pacientes submetidos às reavaliações de 30 e 90 dias pós-tratamento também mostraram melhora significativa (P<0,05) dos valores de IP, IG, SS e PBS entre estas fases. Já o NI entre 4-5mm aumentou de forma significativa (P=0,04) entre o pré-tratamento e 90 dias após o mesmo, enquanto que o NI ≥ 6mm diminui significativamente entre as reavaliações de 30 e 90 dias (P=0,01 e P=0,02, respectivamente). Quando comparados os valores de 30 com os de 90 dias resultados semelhantes aos supracitados foram observados, inclusive o aumento do NI entre 4-5mm (P=0,02). É verificado também entre estas fases um IG aumentado (P=0,07). Quanto aos valores hematológicos ocorreu uma diminuição significativa dos níveis de bastões (P=0,05) e de monócitos (P=0,03) após o tratamento periodontal (30 dias), enquanto que o colesterol total e o LDL apresentaram uma tendência ao aumento (P=0,09 para ambos). Já nos sete pacientes submetidos às duas reavaliações o colesterol total apresentou aumento significativo entre as fases pré-tratamento, 30 (P=0,04) e 90 dias (P=0,02) após terapia, assim como o LDL (P=0,04 e P=0,03, respectivamente). Quando comparados os valores plaquetários entre as fases 30 e 90 dias pós-tratamento, verifica-se uma tendência a sua diminuição (P=0,09). O Índice de Castelli II (relação colesterol/HDL) apresenta entre as fases pré e 30 dias pós-tratamento tendência a aumento (P=0,09). Através desses resultados é possível concluir que o tratamento periodontal exerceu influência sobre bastões e monócitos do sangue, caracterizada pela diminuição dessas células, e sobre o colesterol total e o LDL, representada pelo aumento de seus valores.