596 resultados para ETHENE
Resumo:
Homo-and heteronuclear meso,meso-(E)-ethene-1,2-diyl-linked diporphyrins have been prepared by the Suzuki coupling of porphyrinylboronates and iodovinylporphyrins. Combinations comprising 5,10,15-triphenylporphyrin (TriPP) on both ends of the ethene-1,2-diyl bridge M 210 (M 2=H 2/Ni, Ni 2, Ni/Zn, H 4, H 2Zn, Zn 2) and 5,15-bis(3,5-di-tert-butylphenyl)porphyrinato-nickel(II) on one end and H 2, Ni, and ZnTriPP on the other (M 211), enable the first studies of this class of compounds possessing intrinsic polarity. The compounds were characterized by electronic absorption and steady state emission spectra, 1H NMR spectra, and for the Ni 2 bis(TriPP) complex Ni 210, single crystal X-ray structure determination. The crystal structure shows ruffled distortions of the porphyrin rings, typical of Ni II porphyrins, and the (E)-C 2H 2 bridge makes a dihedral angle of 50° with the mean planes of the macrocycles. The result is a stepped parallel arrangement of the porphyrin rings. The dihedral angles in the solid state reflect the interplay of steric and electronic effects of the bridge on interporphyrin communication. The emission spectra in particular, suggest energy transfer across the bridge is fast in conformations in which the bridge is nearly coplanar with the rings. Comparisons of the fluorescence behaviour of H 410 and H 2Ni10 show strong quenching of the free base fluorescence when the complex is excited at the lower energy component of the Soret band, a feature associated in the literature with more planar conformations. TDDFT calculations on the gas-phase optimized geometry of Ni 210 reproduce the features of the experimental electronic absorption spectrum within 0.1 eV. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The combined techniques of in situ Raman microscopy and scanning electron microscopy (SEM) have been used to study the selective oxidation of methanol to formaldehyde and the ethene epoxidation reaction over polycrystalline silver catalysts. The nature of the oxygen species formed on silver was found to depend critically upon the exact morphology of the catalyst studied. Bands at 640, 780 and 960 cm-1 were identified only on silver catalysts containing a significant proportion of defects. These peaks were assigned to subsurface oxygen species situated in the vicinity of surface dislocations, AgIII=O sites formed on silver atoms modified by the presence of subsurface oxygen and O2 - species stabilized on subsurface oxygen-modified silver sites, respectively. The selective oxidation of methanol to formaldehyde was determined to occur at defect sites, where reaction of methanol with subsurface oxygen initially produced subsurface OH species (451 cm-1) and adsorbed methoxy species. Two distinct forms of adsorbed ethene were identified on oxidised silver sites. One of these was created on silver sites modified by the interaction of subsurface oxygen species, and the other on silver crystal planes containing a surface coverage of atomic oxygen species. The selective oxidation of ethene to ethylene oxide was achieved by the reaction between ethene adsorbed on modified silver sites and electrophilic AgIII=O species, whereas the combustion reaction was perceived to take place by the reaction of adsorbed ethene with nucleophilic surface atomic oxygen species. Defects were determined to play a critical role in the epoxidation reaction, as these sites allowed the rapid diffusion of oxygen into subsurface positions, and consequently facilitated the formation of the catalytically active AgIII=O sites.
Resumo:
The literature part of the thesis mainly reviews the results of the use of titanium catalysts for ethene and caprolactone polymerisation. The behaviour of titanium catalysts bearing phenoxy-imino ligands has been the focus of more detailed investigations in ethene polymerisation. Reasons for the production of multimodal polyethene for a range of catalysts are also given. The experimental part of the thesis is divided into two sections based on the monomers used in the polymerisations: Part A (ethene) and part B (caprolactone). Part A: Titanium(IV) complexes bearing phenoxy-imino ligands are known to possess high ethene polymerisation activities after MAO activation. Depending on the ligand, the activities of the catalysts in polymerisation can vary between 1 and 44000 kgPE/(mol*cat*h*bar). Depending on the polymerisation temperature and the electronic and steric properties of the catalyst ligands, low to high molar mass values and uni- and multimodal polydispersity values can been observed. In order to discover the reasons for these differences, 22 titanium(IV) complexes containing differently substituted phenoxy-imino derivatives as di- and tetradentate ligands were synthesised with high yields and used as homogeneous catalysts in ethene polymerisations. Computational methods were used to predict the geometry of the synthesised complexes and their configuration after activation. Based on the results obtained, the geometry of the catalyst together with the ligand substituents seem to play a major role in defining the catalytic activity. Novel titanium(IV) complexes bearing malonate ligands were also synthesised. Malonates are considered to be suitable ligand pre-cursors since they can be produced by the simple reaction of any primary or secondary alcohol with malonylchloride, and thus they are easily modifiable. After treatment with MAO these complexes had polymerisation activities between 10 and 50 kgPE/(mol*cat*h*bar) and surprisingly low polydispersity values when compared with similar types of catalysts bearing the O?O chelate ligand. Part B: One of the synthesis routes in the preparation of the above mentioned phenoxy-imino titanium dichloride complexes involved the use of Ti(NMe2)4 with a range of salicylaldimine type compounds. On reaction, these two compounds formed an intermediate product selectively and quantitatively which was active in the ring-opening polymerisation of caprolactone. Several mono-anionic alcoholates were also combined with Ti(NMe2)4 in different molar ratios and used as catalysts. Full conversion of the monomer was achieved within 15 minutes with catalysts having a co-ordination number of 4 while after 22 hours full conversion was achieved with catalysts having a co-ordination number of 6.
Resumo:
The commodity plastics that are used in our everyday lives are based on polyolefin resins and they find wide variety of applications in several areas. Most of the production is carried out in catalyzed low pressure processes. As a consequence polymerization of ethene and α-olefins has been one of the focus areas for catalyst research both in industry and academia. Enormous amount of effort have been dedicated to fine tune the processes and to obtain better control of the polymerization and to produce tailored polymer structures The literature review of the thesis concentrates on the use of Group IV metal complexes as catalysts for polymerization of ethene and branched α-olefins. More precisely the review is focused on the use of complexes bearing [O,O] and [O,N] type ligands which have gained considerable interest. Effects of the ligand framework as well as mechanical and fluxional behaviour of the complexes are discussed. The experimental part consists mainly of development of new Group IV metal complexes bearing [O,O] and [O,N] ligands and their use as catalysts precursors in ethene polymerization. Part of the experimental work deals with usage of high-throughput techniques in tailoring properties of new polymer materials which are synthesized using Group IV complexes as catalysts. It is known that the by changing the steric and electronic properties of the ligand framework it is possible to fine tune the catalyst and to gain control over the polymerization reaction. This is why in this thesis the complex structures were designed so that the ligand frameworks could be fairly easily modified. All together 14 complexes were synthesised and used as catalysts in ethene polymerizations. It was found that the ligand framework did have an impact within the studied catalyst families. The activities of the catalysts were affected by the changes in complex structure and also effects on the produced polymers were observed: molecular weights and molecular weight distributions were depended on the used catalyst structure. Some catalysts also produced bi- or multi-modal polymers. During last decade high-throughput techniques developed in pharmaceutical industries have been adopted into polyolefin research in order to speed-up and optimize the catalyst candidates. These methods can now be regarded as established method suitable for both academia and industry alike. These high-throughput techniques were used in tailoring poly(4-methyl-1-pentene) polymers which were synthesized using Group IV metal complexes as catalysts. This work done in this thesis represents the first successful example where the high-throughput synthesis techniques are combined with high-throughput mechanical testing techniques to speed-up the discovery process for new polymer materials.
Resumo:
Polyethene, polyacrylates and polymethyl acrylates are versatile materials that find wide variety of applications in several areas. Therefore, polymerization of ethene, acrylates and methacrylates has achieved a lot attention during past years. Numbers of metal catalysts have been introduced in order to control the polymerization and to produce tailored polymer structures. Herein an overview on the possible polymerization pathways for ethene, acrylates and methacrylates is presented. In this thesis iron(II) and cobalt(II) complexes bearing tri- and tetradentate nitrogen ligands were synthesized and studied in the polymerization of tertbutyl acrylate (tBA) and methyl methacrylate (MMA). Complexes are activated with methylaluminoxane (MAO) before they form active combinations for polymerization reactions. The effect of reaction conditions, i.e. monomer concentration, reaction time, temperature, MAO to metal ratio, on activity and polymer properties were investigated. The described polymerization system enables mild reaction conditions, the possibility to tailor molar mass of the produced polymers and provides good control over the polymerization. Moreover, the polymerization of MMA in the presence of iron(II) complex with tetradentate nitrogen ligands under conditions of atom transfer radical polymerization (ATRP) was studied. Several manganese(II) complexes were studied in the ethene polymerization with combinatorial methods and new active catalysts were found. These complexes were also studied in acrylate and methacrylate polymerizations after MAO activation and converted into the corresponding alkyl (methyl or benzyl) derivatives. Combinatorial methods were introduced to discover aluminum alkyl complexes for the polymerization of acrylates and methacrylates. Various combinations of aluminum alkyls and ligands, including phosphines, salicylaldimines and nitrogen donor ligands, were prepared in situ and utilized to initiate the polymerization of tBA. Phosphine ligands were found to be the most active and the polymerization MMA was studied with these active combinations. In addition, a plausible polymerization mechanism for MMA based on ESI-MS, 1H and 13C NMR is proposed.
Resumo:
Nonequilibrium process for cracking ethane and n-buthane in the manufacture of ethene has been analytically and numerically investigated in a Heavi-side function temperature field and through a normal shock wave. The results demonstrate that, while the reaction temperature increases, the maximum value of ethene yield is increased, and the optimal reaction duration is sharply shortened. For the identical initial reaction temperature, the maximum value of ethene yield through a stationary normal shock wave is less than that in a Heavi-side function temperature field. However, the ethene consumption after the maximum value in the former case is less than that in the latter. Higher ethene yield will be obtained by using the gasdynamic heating method than by using the current methods.
Resumo:
对乙烷裂解制造乙烯的非平衡过程进行了分析,为了获得高的乙烯产率,需准确控制裂解停留时间并提高裂解反应温度,探讨了目前工业生产中普遍采用的管式裂解炉的特性及局限,这种管式裂解炉的性能虽己接近完善,但仍不能满足裂解工艺需求,对几种利用激波控制加热方法生产乙烯的发明及其不足进行了评述,提出新颖的反向超声速射流混合加热方法,该方法能满足裂解制造乙烯的要求。
Resumo:
Catalytic cracking of butene to propene and ethene was investigated over HMCM-22 zeolite. The performance of HMCM-22 zeolite was markedly influenced by time-on-stream (TOS) and reaction conditions. A rapid deactivation during the first I h reaction, followed by a quasi-plateau in activity, was observed in the process along with significant changes in product distributions, which can be attributed to the fast coking process occurring in the large supercages of MCM-22.