909 resultados para Differential Inclusions with Constraints
Resumo:
Mathematics Subject Classification: 26A33, 34A60, 34K40, 93B05
Resumo:
2000 Mathematics Subject Classification: 58C06, 47H10, 34A60.
Resumo:
Given a Lipschitz continuous multifunction $F$ on ${\mathbb{R}}^{n}$, we construct a probability measure on the set of all solutions to the Cauchy problem $\dot x\in F(x)$ with $x(0)=0$. With probability one, the derivatives of these random solutions take values within the set $ext F(x)$ of extreme points for a.e.~time $t$. This provides an alternative approach in the analysis of solutions to differential inclusions with non-convex right hand side.
Resumo:
AMS subject classification: Primary 34A60, Secondary 49K24.
Resumo:
This article presents and discusses necessary conditions of optimality for infinite horizon dynamic optimization problems with inequality state constraints and set inclusion constraints at both endpoints of the trajectory. The cost functional depends on the state variable at the final time, and the dynamics are given by a differential inclusion. Moreover, the optimization is carried out over asymptotically convergent state trajectories. The novelty of the proposed optimality conditions for this class of problems is that the boundary condition of the adjoint variable is given as a weak directional inclusion at infinity. This improves on the currently available necessary conditions of optimality for infinite horizon problems. © 2011 IEEE.
Resumo:
In the paper, the set-valued covering mappings are studied. The statements on solvability, solution estimates, and well-posedness of inclusions with conditionally covering mappings are proved. The results obtained are applied to the investigation of differential inclusions unsolved for the unknown function. The statements on solvability, solution estimates, and well-posedness of these inclusions are derived.
Resumo:
An infinite hierarchy of solvable systems of purely differential nonlinear equations is introduced within the framework of asymptotic modules. Eacy system consists of (2+1)-dimensional evolution equations for two complex functions and of quite strong differential constraints. It may be interpreted formally as an integro-differential equation in (1+1) dimensions. © 1988.
Resumo:
AMS subject classification: Primary 49N25, Secondary 49J24, 49J25.
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
We have studied two person stochastic differential games with multiple modes. For the zero-sum game we have established the existence of optimal strategies for both players. For the nonzero-sum case we have proved the existence of a Nash equilibrium.
Resumo:
In this paper a theory for two-person zero sum multicriterion differential games is presented. Various solution concepts based upon the notions of Pareto optimality (efficiency), security and equilibrium are defined. These are shown to have interesting applications in the formulation and analysis of two target or combat differential games. The methods for obtaining outcome regions in the state space, feedback strategies for the players and the mode of play has been discussed in the framework of bicriterion zero sum differential games. The treatment is conceptual rather than rigorous.
Resumo:
Combat games are studied as bicriterion differential games with qualitative outcomes determined by threshold values on the criterion functions. Survival and capture strategies of the players are defined using the notion of security levels. Closest approach survival strategies (CASS) and minimum risk capture strategies (MRCS) are important strategies for the players identified as solutions to four optimization problems involving security levels. These are used, in combination with the preference orderings of the qualitative outcomes by the players, to delineate the win regions and the secured draw and mutual kill regions for the players. It is shown that the secured draw regions and the secured mutual kill regions for the two players are not necessarily the same. Simple illustrative examples are given.