Random extremal solutions of differential inclusions
Data(s) |
13/06/2016
13/06/2016
01/06/2016
|
---|---|
Resumo |
Given a Lipschitz continuous multifunction $F$ on ${\mathbb{R}}^{n}$, we construct a probability measure on the set of all solutions to the Cauchy problem $\dot x\in F(x)$ with $x(0)=0$. With probability one, the derivatives of these random solutions take values within the set $ext F(x)$ of extreme points for a.e.~time $t$. This provides an alternative approach in the analysis of solutions to differential inclusions with non-convex right hand side. |
Identificador |
1021-9722 |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
PEst-OE/MAT/UI4106/2014 SFRH/BSAB/113647/2015 http://dx.doi.org/10.1007/s00030-016-0375-0 |
Direitos |
openAccess |
Palavras-Chave | #Differential inclusions #Lipschitz selections #Extremal solutions #Random solutions |
Tipo |
article |