Random extremal solutions of differential inclusions


Autoria(s): Bressan, Alberto; Staicu, Vasile
Data(s)

13/06/2016

13/06/2016

01/06/2016

Resumo

Given a Lipschitz continuous multifunction $F$ on ${\mathbb{R}}^{n}$, we construct a probability measure on the set of all solutions to the Cauchy problem $\dot x\in F(x)$ with $x(0)=0$. With probability one, the derivatives of these random solutions take values within the set $ext F(x)$ of extreme points for a.e.~time $t$. This provides an alternative approach in the analysis of solutions to differential inclusions with non-convex right hand side.

Identificador

1021-9722

http://hdl.handle.net/10773/15704

Idioma(s)

eng

Publicador

Springer

Relação

PEst-OE/MAT/UI4106/2014

SFRH/BSAB/113647/2015

http://dx.doi.org/10.1007/s00030-016-0375-0

Direitos

openAccess

Palavras-Chave #Differential inclusions #Lipschitz selections #Extremal solutions #Random solutions
Tipo

article