1000 resultados para CAPACITANCE SPECTROSCOPY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electrochemical analyses on confined electroactive molecular layers, herein exemplified with electroactive self-assembled monolayers, sample current contributions that are significantly influenced by additional nonfaradaic and uncompensated resistance effects that, though unresolved, can strongly distort redox analysis. Prior work has shown that impedance-derived capacitance spectroscopy approaches can cleanly resolve all contributions generated at such films, including those which are related to the layer dipolar/electrostatic relaxation characteristics. We show herein that, in isolating the faradaic and nonfaradaic contributions present within an improved equivalent circuit description of such interfaces, it is possible to accurately simulate subsequently observed cyclic voltammograms (that is, generated current versus potential patterns map accurately onto frequency domain measurements). Not only does this enable a frequency-resolved quantification of all components present, and in so doing, a full validation of the equivalent circuit model utilized, but also facilitates the generation of background subtracted cyclic voltammograms remarkably free from all but faradaic contributions. © 2012 American Chemical Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep defects in annealed InP have been investigated by deep level transient capacitance spectroscopy (DLTS), photo induced current transient spectroscopy (PICTS) and thermally stimulated current spectroscopy (TSC). Both DLTS results of annealed semiconducting InP and PICTS and TSC results of annealed semi-insulating InP indicate that InP annealed in phosphorus ambient has five defects, while lid? annealed in iron phospbide ambient has two defects. Such a defect formation phenomenon is explained in terms of defect suppression by the iron atom diffusion process. The correlation of the defects and the nature of the defects in annealed InP are discussed based on the results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electronic structure of a diluted magnetic semiconductor (DMS) quantum dot (QD) is studied within the framework of the effective-mass theory. We find that the energies of the electron with different spin orientation exhibit different behavior as a function of magnetic field at small magnetic fields. The energies of the hole decreases rapidly at low magnetic fields and saturate at higher magnetic field due to the sp-d exchange interaction between the carriers and the magnetic ions. The mixing effect of the hole states in the DMS QD can be tuned by changing the external magnetic field. An interesting crossing behavior of the hole ground state between the heavy-hole state and the light-hole state is found with variation of the QD radius. The strength of the interband optical transition for different circular polarization exhibts quite different behavior with increasing magnetic field and QD radius.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tunneling escape of electrons from quantum wells (QWs) has systematically been studied in an arbitrarily multilayered heterostructures, both theoretically and experimentally. A wave packet method is developed to calculate the bias dependence of tunneling escape time (TET) in a three-barrier, two-well structure. Moreover, by considering the time variation of the band-edge profile in the escape transient, arising from the decay of injected electrons in QWs, we demonstrate that the actual escape time of certain amount of charge from QWs, instead of single electron, could be much longer than that for a single electron, say, by two orders of magnitude at resonance. The broadening of resonance may also be expected from the same mechanism before invoking various inhomogeneous and homogeneous broadening. To perform a close comparison between theory and experiment, we have developed a new method to measure TET by monitoring transient current response (TCR), stemming from tunneling escape of electrons out of QWs in a similar heterostructure. The time resolution achieved by this new method reaches to several tens ns, nearly three orders of magnitude faster than that by previous transient-capacitance spectroscopy (TCS). The measured TET shows an U-shaped, nonmonotonic dependence on bias, unambiguously indicating resonant tunneling escape of electrons from an emitter well through the DBRTS in the down-stream direction. The minimum value of TET obtained at resonance is accordance with charging effect and its time variation of injected electrons. A close comparison with the theory has been made to imply that the dynamic build-up of electrons in DBRTS might play an important role for a greatly suppressed tunneling escape rate in the vicinity of resonance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By considering the time variation of band-edge profile arising from the decay of injected charge in quantum wells(QWs), we employ a wave packet method to verify that the actual escape time of certain amount of electrons from QWs could be much larger than that for a single electron. The theoretical result is also in agreement with our measurement of escape time, performed by using a newly developed method--transient current response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep defects in annealed InP have been investigated by deep level transient capacitance spectroscopy (DLTS), photo induced current transient spectroscopy (PICTS) and thermally stimulated current spectroscopy (TSC). Both DLTS results of annealed semiconducting InP and PICTS and TSC results of annealed semi-insulating InP indicate that InP annealed in phosphorus ambient has five defects, while lid? annealed in iron phospbide ambient has two defects. Such a defect formation phenomenon is explained in terms of defect suppression by the iron atom diffusion process. The correlation of the defects and the nature of the defects in annealed InP are discussed based on the results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Persistent photoconductivity (PPC) in vanadyl phthalocyanine (VOPc) organic light-emitting diodes was investigated using photoconductive time response, photocurrent-voltage characteristics and charge extraction in linearly increasing voltage (CELIV) measurements. The experiments were performed in phase 1 (amorphous) and in phase 2 (crystalline) samples obtained by the physical vapour deposition (PVD) technique over ITO/glass electrodes with an Al covering electrode. The results indicated a photoconductivity with a long decay time in phase 1 VOPc described by a stretched exponential relaxation. The device showed a rectifying behaviour and the mobility of holes was measured by CELIV, following a dispersive model. In crystalline samples the PPC effect was not observed and the dominant mechanism of transport of holes was hopping in a Gaussian density of states.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A surface confined redox group contributes to an interfacial charging (quantifiable by redox capacitance) that can be sensitively probed by impedance derived capacitance spectroscopy. In generating mixed molecular films comprising such redox groups, together with specific recognition elements (here antibodies), this charging signal is able to sensitively transduce the recognition and binding of specific analytes. This novel transduction method, exemplified here with C-reactive protein, an important biomarker of cardiac status and general trauma, is equally applicable to any suitably prepared interfacial combination of redox reporter and receptor. The assays are label free, ultrasensitive, highly specific and accompanied by a good linear range. © 2013 Elsevier B.V.