52 resultados para BCT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body-centered-tetragonal (BCT) ZnS nanocrystals have been synthesized, for the first time to the best of our knowledge, by using the chemical coprecipitation method at higher synthesis temperatures of 65 and 95 degrees C. It is confirmed from X-ray diffraction (XRD) studies that in the high-temperature-synthesized samples, cubic and BCT phases coexist, in contrast to the room-temperature-synthesized sample, which consists of only cubic phase with sizes of the particles lying between 2 and 3 nm. The sizes of BCT phase nanocrystals are bigger than those of cubic phase of ZnS. The presence of BCT phase of ZnS in the samples is increased from 40 to 90% when the temperature of synthesis is increased from 65 to 95 degrees C. The nanocrystalline nature and UV-Vis absorption characteristics of the prepared samples have been studied with a transmission electron microscope (TEM) and a UV-Visible pectrophotometer, respectively. The room-temperature-synthesized ZnS sample shows photoluminescence (PL) emission in the blue region with multiple peaks, whereas the high-temperature-synthesized samples show PL emissions in the visible region. The Gaussian fittings of the measured PL spectra shows that three PL peaks at 429, 477, and 525 nm are appeared in the 65 degrees C sample and two peaks at 491 and 540 nm appear in the 95 degrees C sample with the enhanced PL intensity of the green peak at 540 nm. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast conservation therapy (BCT) is the procedure of choice for the management of the early stage breast cancer. However, its utilization has not been maximized because of logistics issues associated with the protracted treatment involved with the radiation treatment. Accelerated Partial Breast Irradiation (APBI) is an approach that treats only the lumpectomy bed plus a 1-2 cm margin, rather than the whole breast. Hence because of the small volume of irradiation a higher dose can be delivered in a shorter period of time. There has been growing interest for APBI and various approaches have been developed under phase I-III clinical studies; these include multicatheter interstitial brachytherapy, balloon catheter brachytherapy, conformal external beam radiation therapy and intra-operative radiation therapy (IORT). Balloon-based brachytherapy approaches include Mammosite, Axxent electronic brachytherapy and Contura, Hybrid brachytherapy devices include SAVI and ClearPath. This paper reviews the different techniques, identifying the weaknesses and strength of each approach and proposes a direction for future research and development. It is evident that APBI will play a role in the management of a selected group of early breast cancer. However, the relative role of the different techniques is yet to be clearly identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel stress-induced martensitic phase transformation in an initial < 100 >/{100} B2-CuZr nanowire is reported for the first time in this letter. Such behavior is observed in a nanowire with cross-sectional dimensions of 19.44 x 19.44 angstrom(2) over a temperature range of 100-400 K and at a strain rate of 1 x 10(9) s(-1) using atomistic simulations. Phase transformation from an initial B2 phase to a BCT (Body-Centered-Tetragonal) phase is observed via nucleation and propagation of {100} twinning plane under high strain rate tensile deformation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive molecular dynamics (MD) simulations have been performed in a B2-NiAl nanowire using an embedded atom method (EAM) potential. We show a stress induced B2 -> body-centered-tetragonal (BCT) phase transformation and a novel temperature and cross-section dependent pseudo-elastic/pseudo-plastic recovery from such an unstable BCT phase with a recoverable strain of similar to 30% as compared to 5-8% in polycrystalline materials. Such a temperature and cross-section dependent pseudo-elastic/pseudo-plastic strain recovery can be useful in various interesting applications of shape memory and strain sensing in nanoscale devices. Effects of size, temperature, and strain rate on the structural and mechanical properties have also been analyzed in detail. For a given size of the nanowire the yield stress of both the B2 and the BCT phases is found to decrease with increasing temperature, whereas for a given temperature and strain rate the yield stress of both the B2 and the BCT phase is found to increase with increase in the cross-sectional dimensions of the nanowire. A constant elastic modulus of similar to 80 GPa of the B2 phase is observed in the temperature range of 200-500 K for nanowires of cross-sectional dimensions in the range of 17.22-28.712 angstrom, whereas the elastic modulus of the BCT phase shows a decreasing trend with an increase in the temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technological forecasting, defined as quantified probabilistic prediction of timings and degree of change in the technological parameters, capabilities desirability or needs at different times in the future, is applied to birth control technology (BCT) as a means of revealing the paths of most promising research through identifying the necessary points for breakthroughs. The present status of BCT in the areas of pills and the IUD, male contraceptives, immumological approaches, post-coital pills, abortion, sterilization, luteolytic agents, laser technologies, and control of the sex of the child, are each summarized and evaluated in turn. Fine mapping is done to identify the most potentially promising areas of BCT. These include efforts to make oral contraception easier, improvement of the design of the IUD, clinical evaluation of the male contraceptive danazol, the effecting of biochemical changes in the seminal fluid, and researching of immunological approaches and the effects of other new drugs such as prostaglandins. The areas that require immediate and large research inputs are oral contraception and the IUD. On the basis of population and technological forecasts, it is deduced that research efforts could most effectively aid countries like India through the immediate production of an oral contraceptive pill or IUD with long-lasting effects. Development of a pill for males or an immunization against pre gnancy would also have a significant impact. However, the major impediment to birth control programs to date is attitudes, which must be changed through education.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, a novel stress-induced phase transformation in an initial < 100 >/{100} B2-CuZr nanowire has been reported for the first time [Sutrakar and Mahapatra, Mater. Lett. 63, 1289 (2009)]. Following this, a martenisitic phase transformation in Cu-Zr nanowire was shown [Cheng et al., Appl. Phys. Lett. 95, 021911 (2009)] using the same idea (Sutrakar and Mahapatra, Mater. Lett. 63, 1289 (2009)]. The pseudoelastic recovery of the bct phase of Cu-Zr by unloading has also been shown [Cheng et al., Appl. Phys. Lett. 95, 021911 (2009)]. They also tested the epitaxial bain path [Alippi et al., Phys. Rev. Lett. 78, 3892 (1997)] and reported that the bct phase in the nanowire is metastable, whereas the bulk counterpart is unstable. This aspect is re-examined in this comment with corrected results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper the effects of temperature and high strain rate loading on the formation of various surface patterns in Ni-Al nano-layers are discussed. Effects of boundary conditions on the B2 -> BCT phase transformation in the nano-layer are also discussed. This study is aimed at developing several interesting patterned surface structures in Ni-Al nanolayer by controlling the phase transformation temperature and mechanical loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel stress induced martenistic phase transformation is reported in an initial B2-CuZr nanowire of cross-sectional dimensions in the range of 19.44 x 19.44-38.88 x 38.88 angstrom(2) and temperature in the range of 10-400 K under both tensile and compressive loading. Extensive Molecular Dynamic simulations are performed using an inter-atomic potential of type Finnis and Sinclair. The nanowire shows a phase transformation from an initial B2 phase to BCT (body-centered-tetragonal) phase with failure strain of similar to 40% in tension, whereas in compression, comparatively a small B2 -> BCT phase transformation is observed with failure strain of similar to 25%. Size and temperature dependent deformation mechanisms which control ultimately the B2 -> BCT phase transformation are found to be completely different for tensile and compressive loadings. Under tensile loading, small cross-sectional nanowire shows a single step phase transformation, i.e. B2 -> BCT via twinning along {100} plane, whereas nanowires with larger cross-sectional area show a two step phase transformation, i.e. B2 -> R phase -> BCT along with intermediate hardening. In the first step, nanowire shows phase transformation from B2 -> R phase via twinning along {100} plane, afterwards the nanowire deforms via twinning along {110} plane which cause further transformation from R phase -> BCT phase. Under compressive loading, the nanowire shows crushing along {100} plane after a single step phase transformation from B2 -> BCT. Proper tailoring of such size and temperature dependent phase transformation can be useful in designing nanowire for high strength applications with corrosion and fatigue resistance. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The asymmetric stress strain behavior under tension/compression in an initial < 100 > B-2-NiAl nanowire is investigated considering two different surface configurations i.e., < 100 >/(0 1 0) (0 0 1) and < 100 >/(0 1 1) (0 - 1 1). This behavior is attributed to two different deformation mechanisms namely a slip dominated deformation under compression and a known twinning dominated deformation under tension. It is also shown that B2 -> BCT (body-centered-tetragonal) phase transformation under tensile loading is independent of the surface configurations for an initial < 100 > oriented NiAl nanowire. Under tensile loading, the nanowire undergoes a stress-induced martensiticphase transformation from an initial B2 phase to BCT phase via twinning along {110} plane with failure strain of similar to 0.30. On the other hand, a compressive loading causes failure of these nanowires via brittle fracture after compressive yielding, with a maximum failure strain of similar to-0.12. Such brittle fracture under compressive loading occurs via slip along {110} plane without any phase transformations. Softening/hardening behavior is also reported for the first time in these nanowires under tensile/compressive loadings, which cause asymmetry in their yield strength behavior in the stress strain space. Result shows that a sharp increase in energy with increasing strain under compressive loading causes hardening of the nanowire, and hence, gives improved yield strength as compared to tensile loading. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metallic glass Vitrovac 4040 with the composition Fe39Ni39Mo4Si6B12 crystallizes in the order alpha-Fe, hexagonal Ni5Si2 and gamma-(Fe,Ni,Mo) by primary, secondary and polymorphic modes, respectively. The activation energies determined from the non-isothermal kinetics using Kissinger method turn out to be 490, 550 and 449 kJ.mol-1 for the above crystallization reactions. It has been observed that alpha transforms to gamma during annealing. Further, the bct (Fe1-xNix)3B phase has been identified when the glass is annealed above 1023 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tialite, beta-Al2TiO5, a low expansion material, has been synthesised by the combustion of corresponding metal nitrates and carbohydrazide (CH) or urea redox mixtures at 500-degrees-C. As prepared powders contained tialite, rutile, and corundum in the mole ratios of 50:25:25 (CH) and 20:40:40 (urea). The combustion derived powders, when calcined 30 min at 1300-degrees-C, gave single phase beta-tialite having a surface area of 20-25 m2 g-1 and a particle size of 0.79-1.03 mum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, there has been growing interest in Ca modified BaTiO3 structures due to their larger electro-optic coefficients for their use in optical storage of information over conventional BaTiO3 crystals. Barium Calcium Titanate (BCT) shows promising applications in advanced laser systems, optical interconnects and optical storage devices. BaTiO3 thin films of varied Ca (3 at. % - 15 at. %) doping were deposited using pulsed laser ablation (KrF excimer laser) technique over Pt/Si substrates. The stoichiometric and the compositional analysis were carried out using EDAX and SIMS. The dielectric studies were done at the frequency regime of 40 Hz to 100 kHz at different ambient temperatures from 200 K to 600 K. The BCT thin films exhibited diffuse phase transition, which was of a typical non lead relaxor behavior and had high dielectric constant and low dielectric loss. The phase transition for the different compositions of BCT thin films was near the room temperature, showing a marked departure from the bulk phase transition. The C - V and the hysteresis behavior confirmed the ferroelectric nature below the phase transition and paraelectric at the room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper considers the formation of crystalline phases during solidification and crystallisation of the Zr53Cu21Al10Ni8Ti8 alloy. Solidification was carried out by a copper mould casting technique, which yielded a partially crystalline microstructure comprising a `big cube phase' in a dendritic morphology and a bct Zr2Ni phase. Detailed high-resolution microscopy was carried out to determine possible mechanisms for the formation of the crystalline phases. Based on microstructural examinations, it was established that the dendrites grew by the attachment of atomistic ledges. The bct Zr2Ni phase, formed during solidification and crystallisation, showed various types of faults depending on the crystallite size, and its crystallography was examined in detail. It has been shown that the presence of these faults could be explained by anti-site occupancy in the bct lattice of the Zr2Ni phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present investigation, efforts were made to study the different frictional responses of materials with varying crystal structure and hardness during sliding against a relatively harder material of different surface textures and roughness. In the experiments, pins were made of pure metals and alloys with significantly different hardness values. Pure metals were selected based on different class of crystal structures, such as face centered cubic (FCC), body centered cubic (BCC), body centered tetragonal (BCT) and hexagonal close packed (HCP) structures. The surface textures with varying roughness were generated on the counterpart plate which was made of H-11 die steel. The experiments were conducted under dry and lubricated conditions using an inclined pin-on-plate sliding tester for various normal loads at ambient environment. In the experiments, it was found that the coefficient of friction is controlled by the surface texture of the harder mating surfaces. Further, two kinds of frictional response, namely steady-state and stick-slip, were observed during sliding. More specifically, stead-state frictional response was observed for the FCC metals, alloys and materials with higher hardness. Stick-slip frictional response was observed for the metals which have limited number of slip systems such as BCT and HCP. In addition, the stick-slip frictional response was dependent on the normal load, lubrication, hardness and surface texture of the counterpart material. However, for a given kind of surface texture, the roughness of the surface affects neither the average coefficient of friction nor the amplitude of stick-slip oscillation significantly.