831 resultados para Anomaly. Geometry non-Euclidean geometry. History of mathematics. Mathematics research
Resumo:
The number of papers on History of Mathematics Education presented at EBRAPEM (Brazilian Meeting of Graduate Students in Mathematics Education) has increased significantly between 2003 and 2008. This article presents a study with the aim of identifying themes, periods in focus, and sources and theoretical and methodological references used by the authors of the papers on History of Mathematics Education published in the proceedings of VII, VIII, IX, X, XI and XII EBRAPEM. The study indicates that the approach of ongoing research in History of Mathematics Education in Brazil has been similar to the approach of research in History of Education in general. However, the institutional separation between these two areas of investigation is noted as a factor rendering communication between both groups of researchers difficult.
Resumo:
Includes bibliographies.
Resumo:
"In this reprint we have corrected several misprints and errors which had slipped into the first printing."
Resumo:
"Stereotyped edition"
Resumo:
Bibliography: v. 1, p. xiii-xvi.
Resumo:
Mode of access: Internet.
Resumo:
Includes index.
Resumo:
Mode of access: Internet.
Resumo:
We explore a generalisation of the L´evy fractional Brownian field on the Euclidean space based on replacing the Euclidean norm with another norm. A characterisation result for admissible norms yields a complete description of all self-similar Gaussian random fields with stationary increments. Several integral representations of the introduced random fields are derived. In a similar vein, several non-Euclidean variants of the fractional Poisson field are introduced and it is shown that they share the covariance structure with the fractional Brownian field and converge to it. The shape parameters of the Poisson and Brownian variants are related by convex geometry transforms, namely the radial pth mean body and the polar projection transforms.
Resumo:
This present research the aim to show to the reader the Geometry non-Euclidean while anomaly indicating the pedagogical implications and then propose a sequence of activities, divided into three blocks which show the relationship of Euclidean geometry with non-Euclidean, taking the Euclidean with respect to analysis of the anomaly in non-Euclidean. PPGECNM is tied to the line of research of History, Philosophy and Sociology of Science in the Teaching of Natural Sciences and Mathematics. Treat so on Euclid of Alexandria, his most famous work The Elements and moreover, emphasize the Fifth Postulate of Euclid, particularly the difficulties (which lasted several centuries) that mathematicians have to understand him. Until the eighteenth century, three mathematicians: Lobachevsky (1793 - 1856), Bolyai (1775 - 1856) and Gauss (1777-1855) was convinced that this axiom was correct and that there was another geometry (anomalous) as consistent as the Euclid, but that did not adapt into their parameters. It is attributed to the emergence of these three non-Euclidean geometry. For the course methodology we started with some bibliographical definitions about anomalies, after we ve featured so that our definition are better understood by the readers and then only deal geometries non-Euclidean (Hyperbolic Geometry, Spherical Geometry and Taxicab Geometry) confronting them with the Euclidean to analyze the anomalies existing in non-Euclidean geometries and observe its importance to the teaching. After this characterization follows the empirical part of the proposal which consisted the application of three blocks of activities in search of pedagogical implications of anomaly. The first on parallel lines, the second on study of triangles and the third on the shortest distance between two points. These blocks offer a work with basic elements of geometry from a historical and investigative study of geometries non-Euclidean while anomaly so the concept is understood along with it s properties without necessarily be linked to the image of the geometric elements and thus expanding or adapting to other references. For example, the block applied on the second day of activities that provides extend the result of the sum of the internal angles of any triangle, to realize that is not always 180° (only when Euclid is a reference that this conclusion can be drawn)
Resumo:
This thesis is an attempt to throw light on the works of some Indian Mathematicians who wrote in Arabic or persian In the Introductory Chapter on outline of general history of Mathematics during the eighteenth Bnd nineteenth century has been sketched. During that period there were two streams of Mathematical activity. On one side many eminent scholers, who wrote in Sanskrit, .he l d the field as before without being much influenced by other sources. On the other side there were scholars whose writings were based on Arabic and Persian text but who occasionally drew upon other sources also.
Resumo:
Mathematics education in Brazil, if we consider what one may call the scientific phase, is about 30 years old. The papers for this special issue focus mainly on this period. During these years, many trends have emerged in mathematics education to address the complex problems facing Brazilian society. However, most Brazilian mathematics educators feel that the separation of research into trends is a theoretical idealization that does not respond to the dynamics of the problems we face. We raise the conjecture that the complexity of Brazilian society, where pockets of wealth coexist with the most shocking poverty, has contributed to the adoption and generation of different strands in mathematics education, crossing the boundaries between trends. At a more micro level, we also raise the conjecture that Brazilian trends in research are interwoven because of the way that Brazilian mathematics educators have experienced the process of globalization over these 30 years. This tapestry of trends is a predominant characteristic of mathematics education in Brazil. © FIZ Karlsruhe 2009.
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Pós-graduação em Educação Matemática - IGCE