896 resultados para Alethic logic
Resumo:
We provide conservative translations from propositional modal logic KT (the simplest normal alethic logic) into propositional modal logic KD (the simplest normal deontic logic), and from this into the propositional modal logic K (the simplest normal logic simpliciter). Following an idea discussed by Jaakko Hintikka, these conservative translations are based on the third formulation of Kantian categorical imperative, the formulation of the Kingdom of Ends.
Resumo:
This paper has two central purposes: the first is to survey some of the more important examples of fallacious argument, and the second is to examine the frequent use of these fallacies in support of the psychological construct: Attention Deficit Hyperactivity Disorder (ADHD). The paper divides 12 familiar fallacies into three different categories—material, psychological and logical—and contends that advocates of ADHD often seem to employ these fallacies to support their position. It is suggested that all researchers, whether into ADHD or otherwise, need to pay much closer attention to the construction of their arguments if they are not to make truth claims unsupported by satisfactory evidence, form or logic.
Resumo:
While it is commonly accepted that computability on a Turing machine in polynomial time represents a correct formalization of the notion of a feasibly computable function, there is no similar agreement on how to extend this notion on functionals, that is, what functionals should be considered feasible. One possible paradigm was introduced by Mehlhorn, who extended Cobham's definition of feasible functions to type 2 functionals. Subsequently, this class of functionals (with inessential changes of the definition) was studied by Townsend who calls this class POLY, and by Kapron and Cook who call the same class basic feasible functionals. Kapron and Cook gave an oracle Turing machine model characterisation of this class. In this article, we demonstrate that the class of basic feasible functionals has recursion theoretic properties which naturally generalise the corresponding properties of the class of feasible functions, thus giving further evidence that the notion of feasibility of functionals mentioned above is correctly chosen. We also improve the Kapron and Cook result on machine representation.Our proofs are based on essential applications of logic. We introduce a weak fragment of second order arithmetic with second order variables ranging over functions from NN which suitably characterises basic feasible functionals, and show that it is a useful tool for investigating the properties of basic feasible functionals. In particular, we provide an example how one can extract feasible programs from mathematical proofs that use nonfeasible functions.
Resumo:
The present paper motivates the study of mind change complexity for learning minimal models of length-bounded logic programs. It establishes ordinal mind change complexity bounds for learnability of these classes both from positive facts and from positive and negative facts. Building on Angluin’s notion of finite thickness and Wright’s work on finite elasticity, Shinohara defined the property of bounded finite thickness to give a sufficient condition for learnability of indexed families of computable languages from positive data. This paper shows that an effective version of Shinohara’s notion of bounded finite thickness gives sufficient conditions for learnability with ordinal mind change bound, both in the context of learnability from positive data and for learnability from complete (both positive and negative) data. Let Omega be a notation for the first limit ordinal. Then, it is shown that if a language defining framework yields a uniformly decidable family of languages and has effective bounded finite thickness, then for each natural number m >0, the class of languages defined by formal systems of length <= m: • is identifiable in the limit from positive data with a mind change bound of Omega (power)m; • is identifiable in the limit from both positive and negative data with an ordinal mind change bound of Omega × m. The above sufficient conditions are employed to give an ordinal mind change bound for learnability of minimal models of various classes of length-bounded Prolog programs, including Shapiro’s linear programs, Arimura and Shinohara’s depth-bounded linearly covering programs, and Krishna Rao’s depth-bounded linearly moded programs. It is also noted that the bound for learning from positive data is tight for the example classes considered.
Resumo:
Power system stabilizers (PSS) work well at the particular network configuration and steady state conditions for which they were designed. Once conditions change, their performance degrades. This can be overcome by an intelligent nonlinear PSS based on fuzzy logic. Such a fuzzy logic power system stabilizer (FLPSS) is developed, using speed and power deviation as inputs, and provides an auxiliary signal for the excitation system of a synchronous motor in a multimachine power system environment. The FLPSS's effect on the system damping is then compared with a conventional power system stabilizer's (CPSS) effect on the system. The results demonstrate an improved system performance with the FLPSS and also that the FLPSS is robust
Resumo:
Fuzzy logic has been applied to control traffic at road junctions. A simple controller with one fixed rule-set is inadequate to minimise delays when traffic flow rate is time-varying and likely to span a wide range. To achieve better control, fuzzy rules adapted to the current traffic conditions are used.
Resumo:
Traffic control at road junctions is one of the major concerns in most metropolitan cities. Controllers of various approaches are available and the required control action is the effective green-time assigned to each traffic stream within a traffic-light cycle. The application of fuzzy logic provides the controller with the capability to handle uncertain natures of the system, such as drivers’ behaviour and random arrivals of vehicles. When turning traffic is allowed at the junction, the number of phases in the traffic-light cycle increases. The additional input variables inevitably complicate the controller and hence slow down the decision-making process, which is critical in this real-time control problem. In this paper, a hierarchical fuzzy logic controller is proposed to tackle this traffic control problem at a 2-way road junction with turning traffic. The two levels of fuzzy logic controllers devise the minimum effective green-time and fine-tune it respectively at each phase of a traffic-light cycle. The complexity of the controller at each level is reduced with smaller rule-set. The performance of this hierarchical controller is examined by comparison with a fixed-time controller under various traffic conditions. Substantial delay reduction has been achieved as a result and the performance and limitation of the controller will be discussed.
Resumo:
Traffic control at a road junction by a complex fuzzy logic controller is investigated. The increase in the complexity of junction means more number of input variables must be taken into account, which will increase the number of fuzzy rules in the system. A hierarchical fuzzy logic controller is introduced to reduce the number of rules. Besides, the increase in the complexity of the controller makes formulation of the fuzzy rules difficult. A genetic algorithm based off-line leaning algorithm is employed to generate the fuzzy rules. The learning algorithm uses constant flow-rates as training sets. The system is tested by both constant and time-varying flow-rates. Simulation results show that the proposed controller produces lower average delay than a fixed-time controller does under various traffic conditions.