991 resultados para Árvores de decisão


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O Sistema de Indução C4.5. Requerimentos-chave para a utilização do software. Um exemplo ilustrativo. Algumas dicas de uso.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ferrugem do cafeeiro é a principal doença da cultura do café. O conhecimento dos fatores que condicionam as epidemias de ferrugem e a sua previsão são importantes. Uma instância do processo de descoberta de conhecimento em bases de dados foi realizada para avaliar a aplicação de árvores de decisão na análise e no alerta da ferrugem. As classes do atributo meta foram definidas por intervalos da taxa de progresso da doença. Dados meteorológicos, a carga pendente de frutos e o espaçamento entre plantas serviram de atributos preditivos. As árvores de decisão obtidas auxiliaram na compreensão de quais variáveis, e como as interações dessas variáveis, conduziram a ferrugem no campo. O modelo de alerta para lavouras com alta carga pendente de frutos apresentou bom desempenho e pode ajudar na tomada de decisão referente ao controle da ferrugem do cafeeiro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As árvores de decisão são um meio eficiente para produzir classificadores a partir de bases de dados, sendo largamente utilizadas devido à sua eficiência em relação ao tempo de processamento e por fornecer um meio intuitivo de analisar os resultados obtidos, apresentando uma forma de representação simbólica simples e normalmente compreensível, o que facilita a análise do problema em questão. Este trabalho tem, por finalidade, apresentar um estudo sobre o processo de descoberta de conhecimento em um banco de dados relacionado à área da saúde, contemplando todas as etapas do processo, com destaque à de mineração de dados, dentro da qual são aplicados classificadores baseados em árvores de decisão. Neste estudo, o conhecimento é obtido mediante a construção de árvores de decisão a partir de dados relacionados a um problema real: o controle e a análise das Autorizações de Internações Hospitalares (AIHs) emitidas pelos hospitais da cidade de Pelotas, conveniados ao Sistema Único de Saúde (SUS). Buscou-se encontrar conhecimentos que auxiliassem a Secretaria Municipal da Saúde de Pelotas (SMSP) na análise das AIHs, realizada manualmente, detectando situações que fogem aos padrões permitidos pelo SUS. Finalmente, os conhecimentos obtidos são avaliados e validados, possibilitando verificar a aplicabilidade das árvores no domínio em questão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho propõe um estudo de sinais cerebrais aplicados em sistemas BCI (Brain-Computer Interface - Interfaces Cérebro Computador), através do uso de Árvores de Decisão e da análise dessas árvores com base nas Neurociências. Para realizar o tratamento dos dados são necessárias 5 fases: aquisição de dados, pré-processamento, extração de características, classificação e validação. Neste trabalho, todas as fases são contempladas. Contudo, enfatiza-se as fases de classificação e de validação. Na classificação utiliza-se a técnica de Inteligência Artificial denominada Árvores de Decisão. Essa técnica é reconhecida na literatura como uma das formas mais simples e bem sucedidas de algoritmos de aprendizagem. Já a fase de validação é realizada nos estudos baseados na Neurociência, que é um conjunto das disciplinas que estudam o sistema nervoso, sua estrutura, seu desenvolvimento, funcionamento, evolução, relação com o comportamento e a mente, e também suas alterações. Os resultados obtidos neste trabalho são promissores, mesmo sendo iniciais, visto que podem melhor explicar, com a utilização de uma forma automática, alguns processos cerebrais.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A classificação é uma das tarefas da Mineração de Dados. Esta consiste na aplicação de algoritmos específicos para produzir uma enumeração particular de padrões. Já a classificação é o processo de gerar uma descrição, ou um modelo, para cada classe a partir de um conjunto de exemplos dados. Os métodos adequados e mais utilizados para induzir estes modelos, ou classificadores, são as árvores de decisão e as regras de classificação. As regras e árvores de decisão são populares, principalmente, por sua simplicidade, flexibilidade e interpretabilidade. Entretanto, como a maioria dos algoritmos de indução particionam recursivamente os dados, o processamento pode tornar-se demorado, e a árvore construída pode ser muito grande e complexa, propensa ao overfitting dos dados, que ocorre quando o modelo aprende detalhadamente ao invés de generalizar. Os conjuntos de dados reais para aplicação em Mineração de Dados são, atualmente, muito grandes, e envolvem vários milhares de registros, sendo necessária, também, uma forma de generalizar estes dados. Este trabalho apresenta um novo modelo de indução de classificadores, em que o principal diferencial do algoritmo proposto é a única passada pelo conjunto de treinamento durante o processo de indução, bem como a sua inspiração proveniente de um Sistema Multiagente. Foi desenvolvido um protótipo, o Midas, que foi validado e avaliado com dados de repositórios. O protótipo também foi aplicado em bases de dados reais, com o objetivo de generalizar as mesmas. Inicialmente, foi estudado e revisado o tema de Descoberta de Conhecimento em Bases de Dados, com ênfase nas técnicas e métodos de Mineração de Dados. Neste trabalho, também são apresentadas, com detalhes, as árvores e regras de decisão, com suas técnicas e algoritmos mais conhecidos. Finalizando, o algoritmo proposto e o protótipo desenvolvido são apresentados, bem como os resultados provenientes da validação e aplicação do mesmo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Trata da análise das principais ferramentas quantitativas para a tomada de decisão e análise de investimentos, em particular de análise por árvore de decisão e teoria de precificação de opções aplicada a casos de investimentos em ativos não financeiros. Mostra as vantagens e desvantagens de cada metodologia, em especial as limitações de aplicação prática da TPO. Propõe uma metodologia para calcular o valor das "opções reais" utilizando árvores de decisão

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As técnicas utilizadas para avaliação da segurança estática em sistemas elétricos de potência dependem da execução de grande número de casos de fluxo de carga para diversas topologias e condições operacionais do sistema. Em ambientes de operação de tempo real, esta prática é de difícil realização, principalmente em sistemas de grande porte onde a execução de todos os casos de fluxo de carga que são necessários, exige elevado tempo e esforço computacional mesmo para os recursos atuais disponíveis. Técnicas de mineração de dados como árvore de decisão estão sendo utilizadas nos últimos anos e tem alcançado bons resultados nas aplicações de avaliação da segurança estática e dinâmica de sistemas elétricos de potência. Este trabalho apresenta uma metodologia para avaliação da segurança estática em tempo real de sistemas elétricos de potência utilizando árvore de decisão, onde a partir de simulações off-line de fluxo de carga, executadas via software Anarede (CEPEL), foi gerada uma extensa base de dados rotulada relacionada ao estado do sistema, para diversas condições operacionais. Esta base de dados foi utilizada para indução das árvores de decisão, fornecendo um modelo de predição rápida e precisa que classifica o estado do sistema (seguro ou inseguro) para aplicação em tempo real. Esta metodologia reduz o uso de computadores no ambiente on-line, uma vez que o processamento das árvores de decisão exigem apenas a verificação de algumas instruções lógicas do tipo if-then, de um número reduzido de testes numéricos nos nós binários para definição do valor do atributo que satisfaz as regras, pois estes testes são realizados em quantidade igual ao número de níveis hierárquicos da árvore de decisão, o que normalmente é reduzido. Com este processamento computacional simples, a tarefa de avaliação da segurança estática poderá ser executada em uma fração do tempo necessário para a realização pelos métodos tradicionais mais rápidos. Para validação da metodologia, foi realizado um estudo de caso baseado em um sistema elétrico real, onde para cada contingência classificada como inseguro, uma ação de controle corretivo é executada, a partir da informação da árvore de decisão sobre o atributo crítico que mais afeta a segurança. Os resultados mostraram ser a metodologia uma importante ferramenta para avaliação da segurança estática em tempo real para uso em um centro de operação do sistema.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No presente trabalho foram desenvolvidos modelos de classificação aplicados à mineração de dados climáticos para a previsão de eventos extremos de precipitação com uma hora de antecedência. Mais especificamente, foram utilizados dados observacionais registrados pela estação meteorológica de superfície localizada no Instituto Politécnico da Universidade do Estado do Rio de Janeiro em Nova Friburgo RJ, durante o período de 2008 a 2012. A partir desses dados foi aplicado o processo de Descoberta de Conhecimento em Banco de Dados (KDD Knowledge Discovery in Databases), composto das etapas de preparação, mineração e pós processamento dos dados. Com base no uso de algoritmos de Redes Neurais Artificiais e Árvores de Decisão para a extração de padrões que indicassem um acúmulo de precipitação maior que 10 mm na hora posterior à medição das variáveis climáticas, pôde-se notar que a utilização da observação meteorológica de micro escala para previsões de curto prazo é suscetível a altas taxas de alarmes falsos (falsos positivos). Para contornar este problema, foram utilizados dados históricos de previsões realizadas pelo Modelo Eta com resolução de 15 km, disponibilizados pelo Centro de Previsão de Tempo e Estudos Climáticos do Instituto Nacional de Pesquisas Espaciais CPTEC/INPE. De posse desses dados, foi possível calcular os índices de instabilidade relacionados à formação de situação convectiva severa na região de Nova Friburgo e então armazená-los de maneira estruturada em um banco de dados, realizando a união entre os registros de micro e meso escala. Os resultados demonstraram que a união entre as bases de dados foi de extrema importância para a redução dos índices de falsos positivos, sendo essa uma importante contribuição aos estudos meteorológicos realizados em estações meteorológicas de superfície. Por fim, o modelo com maior precisão foi utilizado para o desenvolvimento de um sistema de alertas em tempo real, que verifica, para a região estudada, a possibilidade de chuva maior que 10 mm na próxima hora.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ao longo dos tempos tem existido um avanço, nas empresas, dirigido à preocupação com o bemestar dos trabalhadores, adotando por isso medidas preventivas. A formação especializada em Medicina do Trabalho é indispensável para o exercício de atividades de prevenção dos riscos profissionais e de promoção da saúde. A postura corporal pode ser definida como a posição e a orientação global do corpo e membros relativamente uns aos outros. Qualquer desvio na forma da coluna vertebral pode gerar solicitações funcionais prejudiciais que ocasionam um aumento de fadiga no trabalhador e leva ao longo do tempo a lesões graves. Cada vez mais surgem doenças profissionais provocadas pela adoção de más posturas, na realização de tarefas diárias dos trabalhadores. A boa postura corporal é uma tarefa específica que representa uma interação complexa entre a função biomecânica e neuromuscular. No presente plano de dissertação foram estudados diferentes classificadores tendo como objetivo classificar boas e más posturas corporais de trabalhadores em contexto de trabalho. Assim foram estudados diferentes classificadores de machine learnig, redes neuronais artificiais, support vector machine, árvores de decisão, análise discriminante, regressão logística, treebagger e naíve bayes. Para treino de classificadores foi realizada a aquisição tridimensional da postura da espinha a 100 pessoas, passando por uma parametrização e treino de diferentes classificadores para a determinação automática do tipo de postura corporal. O classificador que obteve melhor desempenho foi o Treebagger com uma classificação para True Positive de 93,3% e True Negative de 96,2%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Hidráulica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática, Área de Especialização em Tecnologias do Conhecimento e da Decisão

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A classificação automática de sons urbanos é importante para o monitoramento ambiental. Este trabalho apresenta uma nova metodologia para classificar sons urbanos, que se baseia na descoberta de padrões frequentes (motifs) nos sinais sonoros e utiliza-los como atributos para a classificação. Para extrair os motifs é utilizado um método de descoberta multi-resolução baseada em SAX. Para a classificação são usadas árvores de decisão e SVMs. Esta nova metodologia é comparada com outra bastante utilizada baseada em MFCC. Para a realização de experiências foi utilizado o dataset UrbanSound disponível publicamente. Realizadas as experiências, foi possível concluir que os atributos motif são melhores que os MFCC a discriminar sons com timbres semelhantes e que os melhores resultados são conseguidos com ambos os tipos de atributos combinados. Neste trabalho foi também desenvolvida uma aplicação móvel para Android que permite utilizar os métodos de classificação desenvolvidos num contexto de vida real e expandir o dataset.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A representatividade do número de reinternamento hospitalares, no quadro dos custos hospitalares, deverá ser encarada como um indicador de qualidade nos serviços prestados e um objeto de estudo no que diz respeito à forma como estão a ser geridos esses serviços. Caracterizar os utentes com maior propensão a um reinternamento e identificar os fatores de risco que lhe estão associados torna-se, pois, pertinente, pois só assim, se poderá, no futuro, desenvolver uma atuação proativa com o objetivo primeiro de uma redução de custos sem colocar, no entanto, em causa a qualidade dos serviços que as entidades hospitalares prestam aos seus utentes. O objetivo deste estudo consiste em criar um modelo preditivo, com base em árvores de decisão, que auxilie a identificar os fatores de risco dos reinternamentos em 30 dias relativos ao Grupos de Diagnóstico Homogéneo (GDH) 127 - Insuficiência cardíaca e/ou choque, de forma a auxiliar as entidades prestadoras de cuidados de saúde a tomar decisões e atuar atempadamente sobre situações críticas. O estudo é suportado pela base de dados dos Grupos de Diagnóstico Homogéneos, a qual, possui informação sobre o utente e sobre o seu processo de internamento, nomeadamente, o diagnóstico principal, os diagnósticos secundários, os procedimentos realizados, a idade e sexo do utente e o destino após a alta. Pode concluir-se após estudo, que as taxas de reinternamentos têm vindo a aumentar nos últimos anos, que a população idosa insere-se no universo sujeito ao maior risco de reinternamento e que além do diagnóstico principal, a existência de comorbidades representa um papel importante no incremento do risco, nomeadamente, quando são diagnosticadas em simultâneo doenças renais, diabetes mellitus ou doenças isquémicas crónicas do coração (NCOP).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data Mining surge, hoje em dia, como uma ferramenta importante e crucial para o sucesso de um negócio. O considerável volume de dados que atualmente se encontra disponível, por si só, não traz valor acrescentado. No entanto, as ferramentas de Data Mining, capazes de transformar dados e mais dados em conhecimento, vêm colmatar esta lacuna, constituindo, assim, um trunfo que ninguém quer perder. O presente trabalho foca-se na utilização das técnicas de Data Mining no âmbito da atividade bancária, mais concretamente na sua atividade de telemarketing. Neste trabalho são aplicados catorze algoritmos a uma base de dados proveniente do call center de um banco português, resultante de uma campanha para a angariação de clientes para depósitos a prazo com taxas de juro favoráveis. Os catorze algoritmos aplicados no caso prático deste projeto podem ser agrupados em sete grupos: Árvores de Decisão, Redes Neuronais, Support Vector Machine, Voted Perceptron, métodos Ensemble, aprendizagem Bayesiana e Regressões. De forma a beneficiar, ainda mais, do que a área de Data Mining tem para oferecer, este trabalho incide ainda sobre o redimensionamento da base de dados em questão, através da aplicação de duas estratégias de seleção de atributos: Best First e Genetic Search. Um dos objetivos deste trabalho prende-se com a comparação dos resultados obtidos com os resultados presentes no estudo dos autores Sérgio Moro, Raul Laureano e Paulo Cortez (Sérgio Moro, Laureano, & Cortez, 2011). Adicionalmente, pretende-se identificar as variáveis mais relevantes aquando da identificação do potencial cliente deste produto financeiro. Como principais conclusões, depreende-se que os resultados obtidos são comparáveis com os resultados publicados pelos autores mencionados, sendo os mesmos de qualidade e consistentes. O algoritmo Bagging é o que apresenta melhores resultados e a variável referente à duração da chamada telefónica é a que mais influencia o sucesso de campanhas similares.