22 resultados para phenolic acids

em Instituto Politécnico de Bragança


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of natural extracts requires suitable processing conditions to maximize the preservation of the bioactive ingredients. Herein, a microwave-assisted extraction (MAE) process was optimized, by means of response surface methodology (RSM), to maximize the recovery of phenolic acids and flavonoids and obtain antioxidant ingredients from tomato. A 5-level full factorial Box-Behnken design was successfully implemented for MAE optimization, in which the processing time (t), temperature (T), ethanol concentration (Et) and solid/liquid ratio (S/L) were relevant independent variables. The proposed model was validated based on the high values of the adjusted coefficient of determination and on the non-significant differences between experimental and predicted values. The global optimum processing conditions (t=20 min; T=180 ºC; Et=0 %; and S/L=45 g/L) provided tomato extracts with high potential as nutraceuticals or as active ingredients in the design of functional foods. Additionally, the round tomato variety was highlighted as a source of added-value phenolic acids and flavonoids.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Naturally-occurring phytochemicals have received a pivotal attention in the last years, due to the increasing evidences of biological activities. Equisetum giganteum L., commonly known as “giant horsetail”, is a native plant from Central and South America, being largely used in dietary supplements as diuretic, hemostatic, antiinflammatory and anti-rheumatic agents [1,2]. The aim of the present study was to evaluate the antioxidant (scavenging effects on 2,2-diphenyl-1-picrylhydrazyl radicals- RSA, reducing power- RP, β-carotene bleaching inhibition- CBI and lipid peroxidation inhibition- LPI), anti-inflammatory (inhibition of NO production in lipopolysaccharidestimulated RAW 264.7 macrophages) and cytotoxic (in a panel of four human tumor cell lines: MCF-7- breast adenocarcinoma, NCI-H460- non-small cell lung cancer, HeLa- cervical carcinoma and HepG2- hepatocellular carcinoma; and in non-tumor porcine liver primary cells- PLP2) properties of E. giganteum, providing a phytochemical characterization of its extract (ethanol/water, 80:20, v/v), by using highperformance liquid chromatography coupled to diode array detection and electrospray ionisation mass spectrometry (HPLC-DAD–ESI/MS). E. giganteum presented fourteen phenolic compounds, two phenolic acids and twelve flavonol glycoside derivatives, mainly kaempferol derivatives, accounting to 81% of the total phenolic content, being kaempferol-O-glucoside-O-rutinoside, the most abundant molecule (7.6 mg/g extract). The extract exhibited antioxidant (EC50 values = 123, 136, 202 and 57.4 μg/mL for RSA, RP, CBI and LPI, respectively), anti-inflammatory (EC50 value = 239 μg/mL) and cytotoxic (GI50 values = 250, 258, 268 and 239 μg/mL for MCF-7, NCI-H460, HeLa and HepG2, respectively) properties, which were positively correlated with its concentration in phenolic compounds. Furthermore, up to 400 μg/mL, it did not revealed toxicity in non-tumor liver cells. Thus, this study highlights the potential of E. giganteum extracts as rich sources of phenolic compounds that can be used in the food, pharmaceutical and cosmetic fields.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synthetic additives used in a wide variety of food products have been associated to some toxic effects. This conducted to an increasing interest of consumers for natural additives, including food preservers [1]. Many aromatic herbs have been used to prepare bioactive extracts with benefits to the consumer's health. Foeniculum vulgare Mill. (fennel) and Matricaria recutita L. (chamomile) are examples of popular herbs rich in phenolic compounds with documented antioxidant and antimicrobial properties [2,3]. The present work confirms the antioxidant (DPPH scavenging activity, reducing power and lipid peroxidation inhibition) and antimicrobial (against bacteria such as Bacillus cereus and Salmonella Typhimurium and fungi such as Aspergillus niger, A. versicolor and PenicilliumfimicuJosum) activities of fennel and chamomile extracts, obtained by decoction. The chemical characterization of the extracts, performed by HPLC-DAD-ESIIMS, revealed the presence of five flavonoids (mainly qercetin-3-0- glucoside) and twelve phenolic acids (mainly 5-0-caffeolyquinic acid) for fennel extract and the presence of nine flavonoids (mainly luteolin-0-glucuronide) and ten phenolic acids (mainly di-caffeoyl-2,7- anhydro-3-deoxy-2-octulopyranosonic acid) for chamomile extract. Due to their high antioxidant and antimicrobial activities, both extracts were then incorporated (at DPPH scavenging activity EC25 value: 0.35 mg/mL and 0.165 mg/mL for fennel and chamomile, respectively) in cottage cheeses (prepared by Queijos Casa Matias Lda) as natural additives with two objectives: to increase the shelf-life of the cottage cheeses and to provide bioactive properties to the final products. The results showed that the use of these natural extracts did not alter significantly the nutritional characteristics of the cottage cheese in comparison with control samples (cottage cheese without extracts), but improved its antioxidant potential (more evident in the samples with chamomile extract). After 14 days of storage, only the control samples showed signs of degradation. Overall, the present study highlights the preservation potential of fennel and chamomile extracts in cottage cheeses, improving also their bioactivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Mill.), apart from being a functional food rich in carotenoids, vitamins and minerals, is also an important source of phenolic compounds [1 ,2]. As antioxidants, these functional molecules play an important role in the prevention of human pathologies and have many applications in nutraceutical, pharmaceutical and cosmeceutical industries. Therefore, the recovery of added-value phenolic compounds from natural sources, such as tomato surplus or industrial by-products, is highly desirable. Herein, the microwave-assisted extraction of the main phenolic acids and flavonoids from tomato was optimized. A S-Ieve! full factorial Box-Behnken design was implemented and response surface methodology used for analysis. The extraction time (0-20 min), temperature (60-180 "C), ethanol percentage (0-100%), solidlliquid ratio (5-45 g/L) and microwave power (0-400 W) were studied as independent variables. The phenolic profile of the studied tomato variety was initially characterized by HPLC-DAD-ESIIMS [2]. Then, the effect of the different extraction conditions, as defined by the used experimental design, on the target compounds was monitored by HPLC-DAD, using their UV spectra and retention time for identification and a series of calibrations based on external standards for quantification. The proposed model was successfully implemented and statistically validated. The microwave power had no effect on the extraction process. Comparing with the optimal extraction conditions for flavonoids, which demanded a short processing time (2 min), a low temperature (60 "C) and solidlliquid ratio (5 g/L), and pure ethanol, phenolic acids required a longer processing time ( 4.38 min), a higher temperature (145.6 •c) and solidlliquid ratio (45 g/L), and water as extraction solvent. Additionally, the studied tomato variety was highlighted as a source of added-value phenolic acids and flavonoids.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cynara scolymus L. (artichoke) and Silybum marianum (L.) Gaertn. (milk thistle) are medicinal plants native to the Mediterranean Basin that belong to the Asteraceae family. The flowers and leaves of milk thistle are used in the treatment of liver, spleen and gallbladder disorders [1] and artichoke leaves are used for their cholagogue, choleretic and choliokinetic actions, and also for treatment of dyspepsia and as antidiabetics [2]. The beneficial properties of medicinal plants can be related to their large diversity of phytochemicals, among which phenolic compounds are outstanding. Thereby, the aim of the present work was to obtain and compare the phenolic profiles of artichoke and milk thistle aqueous (prepared by infusion) and hydromethanolic (maceration in methanol: water 80:20, v/v) extracts, using HPLC-DAD-ESI/MS. The aqueous extract of artichoke presented higher concentration in total phenolic compounds (15.29 mg/g extract) than the hydromethanolic extract (4.37 mg/g) with slight differences between the respective profiles; the major flavonoid found in the aqueous and hydromethanolic extract was luteolin-7-O-glucuronide (5.64 and 0.70 mg/g, respectively), followed by luteolin-7-O-glucoside (2.88 and 0.49 mg/g, respectively). Monocaffeoylquinic acid derivatives were only present in the hydromethanolic extract, being 5-O-caffeoylquinic acid (0.49 mg/g) the most abundant one, while dicaffeoylquinic acid derivatives were mostly identified in the aqueous extract; 1,3-O-dicaffeoylquinic acid was the most abundant one in both extracts (0.90 and 0.37 mg/g in the aqueous and hydromethanolic extract, respectively). Regarding to milk thistle preparations, similar phenolic profiles were observed, with only quantitative differences between them. The aqueous extract revealed a higher phenolic compounds concentration (5.57 mg/g) than the hydromethanolic extract (3.56 mg/g), with apigenin-7-O-glucuronide as the major compound in both preparations (3.14 mg/g in the aqueous extract, and 0.58 mg/g in the hydromethanolic extract). Total flavonoids were higher in the aqueous extract (4.66 mg/g), with apigenin-7-Oglucuronide, luteolin-7-O-glucuronide (1.17 mg/g), and apigenin-O-deoxyhexosylglucuronide (0.36 mg/g) as the main constituents. The phenolic acids found in the hydromethanolic extract (total content 1.65 mg/g), included 5-O-caffeolyquinic and protocatechuic acids (0.56 and 0.44 mg/g, respectively). Besides these phenolic acids, the hydromethanolic extract also revealed high levels of luteolin-7-O-glucuronide (0.58 mg/g). Overall, aqueous extracts presented higher phenolic contents than their hydromethanolic extracts in both species, which could be related with the heat treatment to which infusions were subjected.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum L.) is the second most important vegetable crop worldwide and a key component in the so-called “Mediterranean diet”. In the Northeastern region of Portugal, local populations still prefer to consume traditional tomato varieties which they find very tasty and healthy, as they are grown using extensive farming techniques. A previous study of our research team described the nutritional value of the round (batateiro), long (comprido), heart (coração) and yellow (amarelo) tomato varieties [1], but the phenolic profile was unknown until now. Thus, the objective of this study was to characterize the phenolic profiles of these four tomato farmers’ varieties by using HPLC-DAD-ESI/MS and evaluate its antioxidant capacity through four in vitro assays based on different reaction mechanisms. A cis p-coumaric acid derivative was the most abundant compound in yellow and round tomato varieties, while 4-O-caffeolyquinic acid was the most abundant in long and heart varieties. The most abundant flavonoid was quercetin pentosylrutinoside in the four tomato varieties. Yellow tomato presented the highest levels of phenolic compounds, including phenolic acids and flavonoids, but the lowest antioxidant activity. In turn, the round tomato gave the best results in all the antioxidant activity assays. This study demonstrated that these tomato farmers’ varieties are a source of phenolic compounds, mainly phenolic acid derivatives [2], and possess high antioxidant capacity [1]; being thus key elements in the diet to prevent chronic degenerative diseases associated to oxidative stress, such as cancer and coronary artery disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Salvia species are used worldwide for medicine purposes. In general, these medicinal plants have high amounts of flavonoids and phenolic acids, that are thought to be closely related to their health properties [1,2]. In this work, the aerial parts of Salvia farinacea, Salvia mexico, Salvia greggii and Salvia officinalis were extracted with hot water [3]. Extracts were evaluated for their total phenolic content by an adaptation of the Folin-Ciocalteu method and further analysed by high performance liquid chromatography associated with electrospray mass spectrometry (HPLC-DAD-ESI-MSn) in the negative ion mode [4], in order to identify their individual phenolic constituents. The aqueous extracts of S. farinacea, S. mexico, S. officinalis and S. greggii contained, respectively, 106±13, 159±38, 175±46 and 136±1 μg GAE/mg of total phenolics. These four species were characterized by a clear prevalence of caffeic acid derivatives, in particular of rosmarinic acid (MW 360), that is generally the most abundant phenolic compound in Salvia species [2,3]. In addition, S. mexico and S. officinalis contained moderate amounts of salvianolic acid B (MW 718). Among these two, S. mexico was richer in O-caffeoylquinic acid (MW 354), while the latter presented high amounts of salvianolic acid K (MW 556) and moderate amounts of its structural isomer. All the extracts were enriched in flavones: S. farinacea and S. officinalis contained high amounts of luteolin-O-glucuronide while S. mexico contained luteolin-C-glucoside with respective characteristic mass spectrometry fragmentation pattern m/z at 461→285 and m/z at 447→357, 327. Similarly, S. greggii extract presented high content of luteolin-7-O-glucoside ([M-H]− at m/z 447→ 285) and luteolin-C-glucoside and moderate quantities of apigenin-C-hexoside ([M-H]− at m/z 431→341, 311). Further studies are being undertaken in order to understand the contribution of these phenolic constituents in the biological activities of Salvia plants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Salvia species are used worldwide for medicine purposes. In general, these medicinal plants have high amounts of flavonoids and phenolic acids, that are thought to be closely related to their health properties [1,2]. In this work, the aerial parts of Salvia farinacea, Salvia mexico, Salvia greggii and Salvia officinalis were extracted with hot water [3]. Extracts were evaluated for their total phenolic content by an adaptation of the Folin-Ciocalteu method and further analysed by high performance liquid chromatography associated with electrospray mass spectrometry (HPLC-DAD-ESI-MSn) in the negative ion mode [4], in order to identify their individual phenolic constituents. The aqueous extracts of S. farinacea, S. mexico, S. officinalis and S. greggii contained, respectively, 106±13, 159±38, 175±46 and 136±1 μg GAE/mg of total phenolics. These four species were characterized by a clear prevalence of caffeic acid derivatives, in particular of rosmarinic acid (MW 360), that is generally the most abundant phenolic compound in Salvia species [2,3]. In addition, S. mexico and S. officinalis contained moderate amounts of salvianolic acid B (MW 718). Among these two, S. mexico was richer in O-caffeoylquinic acid (MW 354), while the latter presented high amounts of salvianolic acid K (MW 556) and moderate amounts of its structural isomer. All the extracts were enriched in flavones: S. farinacea and S. officinalis contained high amounts of luteolin-O-glucuronide while S. mexico contained luteolin-C-glucoside with respective characteristic mass spectrometry fragmentation pattern m/z at 461→285 and m/z at 447→357, 327. Similarly, S. greggii extract presented high content of luteolin-7-O-glucoside ([M-H]− at m/z 447→ 285) and luteolin-C-glucoside and moderate quantities of apigenin-C-hexoside ([M-H]− at m/z 431→341, 311). Further studies are being undertaken in order to understand the contribution of these phenolic constituents in the biological activities of Salvia plants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study aimed to characterize the extracts prepared from Pimpinella anisum L. (anise) and Coriandrum sativum L. (coriander) (Apiaceae plants) seeds in terms of phenolic composition, and to correlate the obtained profiles with the antioxidant activity. Anise gave the highest abundance in phenolic compounds (42.09± 0.11 mg/g extract), mainly flavonoids (28.08±0.17 mg/g extract) and phenolic acids (14.01±0.06 mg/g extract), and also the highest antioxidant potential, measured by the ability to inhibit lipid peroxidation and β-carotene bleaching, the reducing power and the free radical scavenging activity. Apigenin and luteolin derivatives, as also caffeoylquinic acid derivatives seem to be directly related with the higher in vitro antioxidant potential of the anise extract. In contrast, the lower antioxidant potential of coriander seems to be due to its lower abundance in phenolic compounds (2.24±0.01 mg/g extract). Further studies are necessary to evaluate the in vivo antioxidant potential of the tested extracts, but the in vitro experiments already performed highlight them as potential health promoters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The liver is one of the most important organs of human body, being involved in several vital functions and regulation of physiological processes. Given its pivotal role in the excretion of waste metabolites and drugs detoxification, the liver is often subjected to oxidative stress that leads to lipid peroxidation and severe cellular damage. The conventional treatments of liver diseases such as cirrhosis, fatty liver and chronic hepatitis are frequently inadequate due to side effects caused by hepatotoxic chemical drugs. To overcome this problematic paradox, medicinal plants, owing to their natural richness in phenolic compounds, have been intensively exploited concerning their extracts and fraction composition in order to find bioactive compounds that could be isolated and applied in the treatment of liver ailments. The present review aimed to collect the main results of recent studies carried out in this field and systematize the information for a better understanding of the hepatoprotective capacity of medicinal plants in in vitro and in vivo systems. Generally, the assessed plant extracts revealed good hepatoprotective properties, justifying the fractionation and further isolation of phenolic compounds from different parts of the plant. Twenty-five phenolic compounds, including flavonoids, lignan compounds, phenolic acids and other phenolic compounds, have been isolated and identified, and proved to be effective in the prevention and/or treatment of chemically induced liver damage. In this perspective, the use of medicinal plant extracts, fractions and phenolic compounds seems to be a promising strategy to avoid side effects caused by hepatotoxic chemicals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mushrooms are an important source of natural compounds with acknowledged bioactivity. Pleurotus eryngii (DC.) Quél., in particular, is widely recognized for its organoleptic quality and favorable health effects, being commercially produced in great extent. On the other hand, Suillus bellinii (Inzenga) Watling is an ectomycorrhizal symbiont, whose main properties were only reported in a scarce number of publications. Some current trends point toward using the mycelia and the culture media as potential sources of bioactive compounds, in addition to the fruiting bodies. Accordingly, P. eryngii and S. bellinii were studied for their composition in phenolic acids and sterols, antioxidant capacity (scavenging DPPH radicals, reducing power, β-carotene bleaching inhibition and TBARS formation inhibition), anti-inflammatory effect (by down-regulating LPS-stimulated NO in RAW264.7 cells) and anti-proliferative activity (using MCF-7, NCI-H460, HeLa, HepG2 and PLP2 cell lines). Overall, S. bellinii mycelia showed higher contents of ergosterol and phenolic compounds (which were also detected in higher quantity in its fruiting body) and stronger antioxidant activity than P. eryngii. On the other hand, P. eryngii mycelia showed anti-inflammatory (absent in S. bellinii mycelia) and a cytotoxicity similar (sometimes superior) to its fruiting bodies, in opposition to S. bellinii, whose mycelia presented a decreased anti-proliferative activity. Furthermore, the assayed species showed differences in the growth rate and yielded biomass of their mycelia, which should also be considered in further applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mushrooms are known as a powerful source of bioactive compounds including antioxidants, inhibitors of human tumour cell lines growth, inducers of apoptosis and enhancers of immunity. Indeed, many pre-clinical studies have been conducted in human tumour cell lines and in some cases a number of compounds isolated from mushrooms have followed to clinical trials. The Northeast of Portugal is one of the European regions with higher wild mushrooms diversity. However, to our knowledge, no studies had been conducted so far to verify their bioactivities. The main aim of this work was the evaluation of the bioactive properties (antioxidant properties and growth inhibitory potential on human tumour cell lines) of wild edible mushrooms collected in the Northeast of Portugal. Once properly identified, methanolic, ethanolic and boiling water extracts were prepared from thirty eight wild mushroom species collected in that region. Chemical characterization was obtained by high performance liquid chromatography (HPLC) coupled to a photodiode array detector (DAD) or to a refraction index detector (RI). Antioxidant activity assays were carried out in those extracts, including evaluation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging capacity, reducing power and inhibition of β-carotene bleaching. Extract-induced cell growth inhibition was assessed with the sulforhodamine B assay in four human tumour cell lines (NCI-H460 - lung cancer, MCF-7 -breast cancer, HCT-15 -colon cancer and AGS - gastric cancer). The effects on cell cycle profile and apoptosis were evaluated by flow cytometry and the effect on the expression levels of proteins related to cell cycle and apoptosis was further investigated by Western blotting. Three wild edible mushroom species revealed growth inhibitory activity in the studied human tumour cell lines: Clitocybe alexandri ethanolic extract, Lepista inversa methanolic extract and Suillus collinitus methanolic extract. C. alexandri ethanolic extract induced an S-phase cell cycle arrest and increased the percentage of apoptotic cells, in the NCI-H460 cell line. The analysed mushroom species also provided interesting antioxidant potential, mainly the boiling water extract of L. inversa which showed the highest DPPH radical scavenging activity, reducing power and β-carotene bleaching inhibition. S. collinitus methanolic extract induced a slight increase in the number of cells in G1, with a concomitant decrease in the percentage of cells in the S phase of the cell cycle and an increase in the percentage of apoptotic cells, in the MCF-7 cell line. The combined use of the S. collinitus methanolic extract and etoposide caused a greater decrease in the percentage of cell growth, when compared to either of them used individually, indicating the potential benefit of this combination. The tested extracts were chemically characterized and protocatechuic, p-hydroxybenzoic, p-coumaric and cinnamic acids were the main compounds identified on the phenolic (methanolic and ethanolic) extracts, while mannitol, trehalose and arabinose were the main sugars found in the polysaccharidic (boiling water) extracts after hydrolysis. The individual compounds identified in the extracts were submitted to a screening of tumour cells growth inhibitory activity, but only the phenolic acids and a related compound, cinnamic acid, presented activity. This compound was found to be the most potent one regarding cell growth inhibition in the NCI-H460 cell line. The effect of the individual and combined treatment with the identified compounds was also evaluated. Cinnamic and protochatequic acids caused a statistically significantly reduction in the number of viable cells. In addition, p-hydroxybenzoic acid did not show any significantly reduction in the viable cell number. Nevertheless, it was verified that the concomitant use of the three compounds provided the strongest decrease in the viable cell number, suggesting a possible concomitant effect of those compounds. Overall, the present work has contributed to further understand the bioactive potential of wild edible mushrooms from the Northeast of Portugal. This study allowed to identify some species with antioxidant or tumour cell growth inhibitory potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cork boiling water is an aqueous and complex dark liquor with high concentration of phenolic compounds such as phenolic acids and tannins [1, 2], which are considered biorecalcitrants [2]. Ionizing radiation has been widely studied as an alternative technology for the degradation of organic contaminants without the addition of any other (e.g.: Fenton technologies). The aim of this work was to identify the compounds present in cork boiling water and further evaluate the resulting stable degradation products after gamma irradiation. The irradiation experiments of standard solutions were carried out at room temperature using a Co-60 experimental equipment. The applied absorbed doses were 20 and 50 kGy at a dose rate of 1.5 kGy/h, determined by routine dosimeters [3]. The identification of radiolytic products was carried out by HPLC-DAD-ESI/MS. The phenolic compounds were identified by comparing their retention times and UV–vis and mass spectra with those obtained from standard compounds, when available, as well as by comparing the obtained information with available data reported in the literature. Concerning the obtained results and the literature review, the main cork wastewater components are: quinic, gallic, protocatechuic, vanillic, syringic and ellagic acids. Based on this, we used protocatechuic, vanillic and syringic acids as model compounds to study their degradation by gamma radiation in order to identify the corresponding radiolytic products. Standard aqueous solutions were irradiated and the derivatives of each model compound are represented in figure 1. The obtained results seem to demonstrate that the derivatives of the parent compounds could also be phenolic acids, since it was observed the loss of 44 u (CO2) from the [M-H]- ions. Gallic and protocatechuic acids are identified as derivatives of vanillic and syringic acids, and gallic acid as a protocatechuic acid derivative. Compound 5 ([M-H]- at m/z 169) was tentatively identified as 2,4,6-trihydroxybenzoic acid, since its fragmentation pattern (m/z 151, 125 and 107) is similar to that previously reported in literature [4]. The structure of compound 7 was proposed based on the molecular ion and its fragmentation and compound 6 remains unknown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wild mushrooms have been extensively studied for their value as sources of high quality nutrients and of powerful physiologically bioactive compounds [1,2]. The present study was designed to evaluate the in vitro development of two wild edible mushroom species: Pleurotus eryngii (DC.) Quél. and Suillus belinii (Inzenga) Watling, by testing different solid (Potato Dextrose Agar medium –PDA and Melin-Norkans medium- MMN) and liquid culture media (Potato dextrose broth- PDB and Melin-Norkans medium- MMN). Each strain of mushroom produces a special type of mycelium and this range of characteristics varies in form, color and growth rate. S. bellinii presents a pigmented and rhizomorphic mycelia, whereas, P. eryngii has depigmented and cottony mycelia. The mycelium isolated and grown in PDA showed a faster radial growth compared to the mycelium isolated and grown in both solid and liquid incomplete MMN medium. P. eryngii exhibited a rapid growth and a higher mycelia biomass in both medium compared to S. belinii. Moreover, the obtained mycelia will be characterized in terms of well-recognized bioactive compounds namely, phenolic acids and mycosterols (mainly ergosterol), by using high performance liquid chromatography coupled to diode array and ultraviolet detectors, respectively. These compounds will be correlated to mycelia bioactivity: i) antioxidant activity, evaluated through free radicals scavenging activity, reducing power and lipid peroxidation inhibition in vitro assays; ii) anti-inflammatory activity, assessed through nitric oxide production inhibition in murine macrophages (RAW 264.7 cell line); iii) cytotoxic activity, evaluated either in human tumor cell lines (MCF-7- breast adenocarcinoma, NCIH460- non-small cell lung cancer, HeLa- cervical carcinoma and HepG2- hepatocellular carcinoma) as also in a non-tumor porcine primary liver cells culture established in-house (PLP2). Overall, our expectation is that the bioactive formulations obtained by in vitro culture can be applied as nutraceuticals or incorporated in functional foods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aging process is conceived as a normal stage during human life cycle, but it is also considered a hot topic among scientists and medical community. Alarming rates of premature aging and oxidative stress-related diseases have increasingly affect human individuals. Stress, pollution and exposition to chemical substances are considered the main triggering factors for those conditions; in addition, they also suppress the immune system and, therefore, improve organic vulnerability and occurrence of opportunistic infections [I]. Apart from the associated morbidity and mortality, the increasing rates of antimicrobial resistance improve the severity of the clinical conditions [2]. Botanical preparations possess a multitude of bioactive properties, namely acting as antimicrobials, antioxidants, and homeostasis modulators. Thus, upcoming alternatives, mainly based in plant phytochemicals, are necessary to improve the wellbeing as also life expectancy of individuals. The present study aims to evaluate and to compare both antioxidant and antimicrobial properties of plant extracts rich in phenolic compounds. Among the tested plants, Glycyrrhiza glabra L. (licorice) evidenced the most pronounced free radicals scavenging and antimicrobial effects, followed by Salvia officina/is L. (sage), Thymus vulgaris L. (thyme) and Origanum vulgare L. (oregano). Eucalyptus globulus Labill. (blue gum) and Juglans regia L. (walnut) also showed a high effect, while Pterospartum tridentatum (L.) Willk. (carqueja) and Rubus ulmifolius Schott (elm leaf blackberry) displayed moderate effects, and lastly, Tabebuia impetigirwsa (Mart. ex DC) Standley (pau d'arco), Foeniculum vulgare Miller (fennel), Rosa canina L. (rose hips) and Matricaria recutita L. (chamomile) gave only slight effects. In general, the most pronounced bioactivities were observed in the plant preparations (infusion>decoction>hydromethanolic extract) with higher levels of phenolic compounds (both flavonoids and phenolic acids). The observed synergisms between the phenolic compounds present in the extracts highlight the use of phytochemicals as future health promoters. However, further studies are necessary to understand the effective mode of action of individual phenolic constituents as also the existence of polyvalence relationships between them.