8 resultados para image-guided radiotherapy
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Radiotherapy (RT) is a risk factor for accelerated carotid artery atherosclerotic disease in subjects with head and neck cancer. However, the risk factors of RT-induced carotid artery remodeling are not established. This study aimed to investigate the effects of RT on carotid and popliteal arteries in subjects with head and neck cancer and to evaluate the relationship between baseline clinical and laboratory features and the progression of RT-induced atherosclerosis. Eleven men (age = 57.9 ± 6.2years) with head and neck cancer who underwent cervical bilateral irradiation were prospectively examined by clinical and laboratory analysis and by carotid and popliteal ultrasound before and after treatment (mean interval between the end of RT and the post-RT assessment = 181 ± 47 days). No studied subject used hypocholesterolemic medications. Significant increases in carotid intima-media thickness (IMT) (0.95 ± 0.08 vs. 0.87 ± 0.05 mm; p < 0.0001) and carotid IMT/diameter ratio (0.138 ± 0.013 vs. 0.129 ± 0.014; p = 0.001) were observed after RT, while no changes in popliteal structural features were detected. In addition, baseline low-density lipoprotein cholesterol levels showed a direct correlation with RT-induced carotid IMT change (r = 0.66; p = 0.027), while no other studied variable exhibited a significant relationship with carotid IMT change. These results indicate that RT-induced atherosclerosis is limited to the irradiated area and also suggest that it may be predicted by low-density lipoprotein cholesterol levels in subjects with head and neck cancer.
Resumo:
Teeth are often included in the radiation field during head and neck radiotherapy, and recent clinical evidence suggests that dental pulp is negatively affected by the direct effects of radiation, leading to impaired sensitivity of the dental pulp. Therefore, this study aimed to investigate the direct effects of radiation on the microvasculature, innervation, and extracellular matrix of the dental pulp of patients who have undergone head and neck radiotherapy. Twenty-three samples of dental pulp from patients who finished head and neck radiotherapy were analyzed. Samples were histologically processed and stained with hematoxylin-eosin for morphologic evaluation of the microvasculature, innervation, and extracellular matrix. Subsequently, immunohistochemical analysis of proteins related to vascularization (CD34 and smooth muscle actin), innervation (S-100, NCAM/CD56, and neurofilament), and extracellular matrix (vimentin) of the dental pulp was performed. The morphologic study identified preservation of the microvasculature, nerve bundles, and components of the extracellular matrix in all studied samples. The immunohistochemical analysis confirmed the morphologic findings and showed a normal pattern of expression for the studied proteins in all samples. Direct effects of radiotherapy are not able to generate morphologic changes in the microvasculature, innervation, and extracellular matrix components of the dental pulp in head and neck cancer patients.
Resumo:
This study evaluated the influence of radiotherapy on the dentin bond strength of teeth extracted from patients who had undergone head and neck radiotherapy. A total of 36 samples were divided into two experimental groups: group I (control group, n = 18) and group II (in vivo irradiated group, n = 18). Groups I and II were further separated into three subgroups (six specimens per subgroup), which were further assigned to the three adhesive system protocols employed: Single Bond 2 (SB) (3M ESPE), Easy Bond (EB) (3M ESPE) and Clearfil SE Bond (CSE) (Kuraray). The adhesive systems were applied to the prepared surface according to the manufacturers' instructions and restored using composite resin (Filtek Supreme, 3M ESPE). After 24 h in deionised water (37(o)C), teeth were horizontally and vertically cut to obtain beam specimens with a cross-section area of 0.8 ± 1.0 mm(2). Specimens were tested in tension using a universal testing machine at a cross-speed of 0.5 mm/min. Fracture patterns were observed under SEM. Data was analysed by two-way analysis of variance (p ≤ 0.05). No statistically significant difference was found between the irradiated (R/SB = 44.66 ± 10.12 MPa; R/EB = 41.48 ± 12.71 MPa; and R/CSE = 46.01 ± 6.98 MPa) and control group (C/SB = 39.12 ± 9.51 MPa; C/EB = 42.40 ± 6.66 MPa; and C/CSE = 36.58 ± 7.06 MPa) for any of the adhesive systems. All groups presented a predominance of mixed fracture modes. Head and neck radiotherapy did not affect dentin bond strength for the adhesive materials tested in this study.
Resumo:
To determine the effects of radiotherapy on salivary BPIFA expression and to investigate the role of BPIFA in the development of known radiotherapy side effects. Unstimulated whole-mouth saliva was collected from 45 cancer patients (1 week before treatment, during the treatment, and 1 week after completion of radiotherapy) and from 20 controls. BPIFA1 and BPIFA2 expression was detected by western blotting and analyzed along with clinicopathologic data and side effects from the radiotherapy. A facial radiation field was associated with lower salivary flow during and after radiotherapy and correlated with side effects, mainly mucositis. Salivary BPIFA1 expression levels were similar between the control group and the patient group before treatment. On the other hand, BPIFA2 levels were higher in the patient group before treatment compared with the control group. BPIFA concentration was modified by radiotherapy as BPIFA1 levels increased (P = .0081) and BPIFA2 decreased (P < .0001). Higher levels of BPIFA1 were associated with the presence of mucositis (P = .0363) and its severity (P = .0500). The present study found that levels of BPIFA1 and glycosylated forms of BPIFA2 are affected by radiotherapy, suggesting that these proteins may play a role in the oral microenvironment in irradiated patients with head and neck cancer.
Resumo:
Administration of fractionated doses of irradiation is part of the adjutant therapy for CNS tumours such as craniopharyngiomas and pituitary adenomas. It can maximise cure rates or expand symptom-free period. Among the adverse effects of radiotherapy, the induction of a new tumour within the irradiated field has been frequently described. The precise clinical features that correlate irradiation and oncogenesis are not completely defined, but some authors have suggested that tumors are radiation induced when they are histologically different from the treated ones, arise in greater frequency in irradiated patients than among normal population and tend to occur in younger people with an unusual aggressiveness. In this article, we report a case of a papillary astrocytoma arising in a rather unusual latency period following radiotherapy for craniopharyngioma.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física