15 resultados para Spot sizes
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.
Resumo:
We compared the indication of laparoscopy for treatment of adnexal masses based on the risk scores and tumor diameters with the indication based on gynecology-oncologists' experience. This was a prospective study of 174 women who underwent surgery for adnexal tumors (116 laparotomies, 58 laparoscopies). The surgeries begun and completed by laparoscopy, with benign pathologic diagnosis, were considered successful. Laparoscopic surgeries that required conversion to laparotomy, led to a malignant diagnosis, or facilitated cyst rupture were considered failures. Two groups were defined for laparoscopy indication: (1) absence of American College of Obstetrics and Gynecology (ACOG) guideline for referral of high-risk adnexal masses criteria (ACOG negative) associated with 3 different tumor sizes (10, 12, and 14 cm); and (2) Index of Risk of Malignancy (IRM) with cutoffs at 100, 200, and 300, associated with the same 3 tumor sizes. Both groups were compared with the indication based on the surgeon's experience to verify whether the selection based on strict rules would improve the rate of successful laparoscopy. ACOG-negative and tumors ≤10 cm and IRM with a cutoff at 300 points and tumors ≤10cm resulted in the same best performance (78% success = 38/49 laparoscopies). However, compared with the results of the gynecology-oncologists' experience, those were not statistically significant. The selection of patients with adnexal mass to laparoscopy by the use of the ACOG guideline or IRM associated with tumor diameter had similar performance as the experience of gynecology-oncologists. Both methods are reproducible and easy to apply to all women with adnexal masses and could be used by general gynecologists to select women for laparoscopic surgery; however, referral to a gynecology-oncologist is advisable when there is any doubt.
Resumo:
Monte Carlo track structures (MCTS) simulations have been recognized as useful tools for radiobiological modeling. However, the authors noticed several issues regarding the consistency of reported data. Therefore, in this work, they analyze the impact of various user defined parameters on simulated direct DNA damage yields. In addition, they draw attention to discrepancies in published literature in DNA strand break (SB) yields and selected methodologies. The MCTS code Geant4-DNA was used to compare radial dose profiles in a nanometer-scale region of interest (ROI) for photon sources of varying sizes and energies. Then, electron tracks of 0.28 keV-220 keV were superimposed on a geometric DNA model composed of 2.7 × 10(6) nucleosomes, and SBs were simulated according to four definitions based on energy deposits or energy transfers in DNA strand targets compared to a threshold energy ETH. The SB frequencies and complexities in nucleosomes as a function of incident electron energies were obtained. SBs were classified into higher order clusters such as single and double strand breaks (SSBs and DSBs) based on inter-SB distances and on the number of affected strands. Comparisons of different nonuniform dose distributions lacking charged particle equilibrium may lead to erroneous conclusions regarding the effect of energy on relative biological effectiveness. The energy transfer-based SB definitions give similar SB yields as the one based on energy deposit when ETH ≈ 10.79 eV, but deviate significantly for higher ETH values. Between 30 and 40 nucleosomes/Gy show at least one SB in the ROI. The number of nucleosomes that present a complex damage pattern of more than 2 SBs and the degree of complexity of the damage in these nucleosomes diminish as the incident electron energy increases. DNA damage classification into SSB and DSB is highly dependent on the definitions of these higher order structures and their implementations. The authors' show that, for the four studied models, different yields are expected by up to 54% for SSBs and by up to 32% for DSBs, as a function of the incident electrons energy and of the models being compared. MCTS simulations allow to compare direct DNA damage types and complexities induced by ionizing radiation. However, simulation results depend to a large degree on user-defined parameters, definitions, and algorithms such as: DNA model, dose distribution, SB definition, and the DNA damage clustering algorithm. These interdependencies should be well controlled during the simulations and explicitly reported when comparing results to experiments or calculations.
Resumo:
The androgynophore column, a distinctive floral feature in passion flowers, is strongly crooked or bent in many Passiflora species pollinated by bats. This is a floral feature that facilitates the adaptation to bat pollination. Crooking or bending of plant organs are generally caused by environmental stimulus (e.g. mechanical barriers) and might involve the differential distribution of auxin. Our aim was to study the role of the perianth organs and the effect of auxin in bending of the androgynophore of the bat-pollinated species Passiflora mucronata. Morpho-anatomical characterisation of the androgynophore, including measurements of curvature angles and cell sizes both at the dorsal (convex) and ventral (concave) sides of the androgynophore, was performed on control flowers, flowers from which perianth organs were partially removed and flowers treated either with auxin (2,4-dichlorophenoxyacetic acid; 2,4-D) or with an inhibitor of auxin polar transport (naphthylphthalamic acid; NPA). Asymmetric growth of the androgynophore column, leading to bending, occurs at a late stage of flower development. Removing the physical constraint exerted by perianth organs or treatment with NPA significantly reduced androgynophore bending. Additionally, the androgynophores of plants treated with 2,4-D were more curved when compared to controls. There was a larger cellular expansion at the dorsal side of the androgynophores of plants treated with 2,4-D and in both sides of the androgynophores of plants treated with NPA. This study suggests that the physical constraint exerted by perianth and auxin redistribution promotes androgynophore bending in P. mucronata and might be related to the evolution of chiropterophily in the genus Passiflora.
Resumo:
The presence of calcium, iron, and zinc bound to human milk secretory IgA (sIgA) was investigated. The sIgA components were first separated by two-dimensional polyacrylamide gel electrophoresis and then identified by electrospray ionization-tandem mass spectrometry (ESI MS MS). The metal ions were detected by flame atomic absorption spectrometry after acid mineralization of the spots. The results showed eight protein spots corresponding to the IgA heavy chain constant region. Another spot was identified as the transmembrane secretory component. Calcium was bound to both the transmembrane component and the heavy chain constant region, while zinc was bound to the heavy chain constant region and iron was not bound with the identified proteins. The association of a metal ion with a protein is important for a number of reasons, and therefore, the findings of the present study may lead to a better understanding of the mechanisms of action and of additional roles that sIgA and its components play in human milk.
Resumo:
This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential.
Resumo:
This study sought to analyse the behaviour of the average spinal posture using a novel investigative procedure in a maximal incremental effort test performed on a treadmill. Spine motion was collected via stereo-photogrammetric analysis in thirteen amateur athletes. At each time percentage of the gait cycle, the reconstructed spine points were projected onto the sagittal and frontal planes of the trunk. On each plane, a polynomial was fitted to the data, and the two-dimensional geometric curvature along the longitudinal axis of the trunk was calculated to quantify the geometric shape of the spine. The average posture presented at the gait cycle defined the spine Neutral Curve. This method enabled the lateral deviations, lordosis, and kyphosis of the spine to be quantified noninvasively and in detail. The similarity between each two volunteers was a maximum of 19% on the sagittal plane and 13% on the frontal (p<0.01). The data collected in this study can be considered preliminary evidence that there are subject-specific characteristics in spinal curvatures during running. Changes induced by increases in speed were not sufficient for the Neutral Curve to lose its individual characteristics, instead behaving like a postural signature. The data showed the descriptive capability of a new method to analyse spinal postures during locomotion; however, additional studies, and with larger sample sizes, are necessary for extracting more general information from this novel methodology.
Resumo:
The authors conducted a systematic literature review on physical activity interventions for children and youth with visual impairment (VI). Five databases were searched to identify studies involving the population of interest and physical activity practices. After evaluating 2,495 records, the authors found 18 original full-text studies published in English they considered eligible. They identified 8 structured exercise-training studies that yielded overall positive effect on physical-fitness and motor-skill outcomes. Five leisure-time-physical-activity and 5 instructional-strategy interventions were also found with promising proposals to engage and instruct children and youth with VI to lead an active lifestyle. However, the current research on physical activity interventions for children and youth with VI is still limited by an absence of high-quality research designs, low sample sizes, use of nonvalidated outcome measures, and lack of generalizability, which need to be addressed in future studies.
Resumo:
Vaso-occlusion, responsible for much of the morbidity of sickle-cell disease, is a complex multicellular process, apparently triggered by leukocyte adhesion to the vessel wall. The microcirculation represents a major site of leukocyte-endothelial interactions and vaso-occlusive processes. We have developed a biochip with subdividing interconnecting microchannels that decrease in size (40 μm to 10 μm in width), for use in conjunction with a precise microfluidic device, to mimic cell flow and adhesion through channels of sizes that approach those of the microcirculation. The biochips were utilized to observe the dynamics of the passage of neutrophils and red blood cells, isolated from healthy and sickle-cell anemia (SCA) individuals, through laminin or endothelial adhesion molecule-coated microchannels at physiologically relevant rates of flow and shear stress. Obstruction of E-selectin/intercellular adhesion molecule 1-coated biochip microchannels by SCA neutrophils was significantly greater than that observed for healthy neutrophils, particularly in the microchannels of 40-15 μm in width. Whereas SCA red blood cells alone did not significantly adhere to, or obstruct, microchannels, mixed suspensions of SCA neutrophils and red blood cells significantly adhered to and obstructed laminin-coated channels. Results from this in vitro microfluidic model support a primary role for leukocytes in the initiation of SCA occlusive processes in the microcirculation. This assay represents an easy-to-use and reproducible in vitro technique for understanding molecular mechanisms and cellular interactions occurring in subdividing microchannels of widths approaching those observed in the microvasculature. The assay could hold potential for testing drugs developed to inhibit occlusive mechanisms such as those observed in SCA and thrombotic diseases.
Resumo:
The creation of the Brazilian Program for the Modernization of the Horticulture by the Secretariat of Agriculture and Supplying of the State of São Paulo at CEAGESP, determined the standardization of fruit and vegetables in the follow aspects: degree of coloration, format, calibers, defects and packing. Therefore, the main goal of this research is to correlate the classification given by the Brazilian Program with the one used by the wholesalers at CEAGESP, verifying if the established norms are being fulfilled for cultivar Carmen and Debora (SAKATA SEED). The results showed, that for cultivar Carmem, for the averages of the observed values it does not move away from the norms created by the Program for sizes small and medium. However, for the case of cultivar Debora, the results showed differences between the adopted classifications. The tomatoes were devaluated, because had been commercialized below of the standardization indicated for the Brazilian Program.
Resumo:
Quality evaluation of classification was done in two fresh market tomatoes packing house, using electronically and mechanical equipments in two harvest periods, summer and winter seasons. The main goal of this work was to evaluate size and color grading conformity with the standards proposed by the Brazilian Program for Horticulture Modernization and size grading obtainded with the one established by the packer. The cultivar studied was Carmen. The results showed that there was no grade conformity with the fresh tomato quality standards proposed by the Brazilian Program for Horticulture Modernization. The grade conformity obtained when compared with the one programmed by the packer, was only for large sizes, in both equipments. The electronically equipment has presented better performance, over the mechanical, considering grading quality and fruits post-harvest quality. However, the electronically equipment must be constantly monitored to achieve efficiency and investment return. On the other side, for mechanical equipment it will be necessary to review the actual system of size grading, in order to follow the fresh tomato quality standards.
Resumo:
The unusual development of branches along the stem of Euterpe edulis is described for the first time. Branches originated at 2 to 190 cm from the ground. Ramified individuals and branches were able to produce reproductive structures and some branches produced roots. A plausible cause for the observed anomaly could be genetic problems due to small population sizes. The better agreement of this process can have a positive effect in the harvest of the heart of palm through the artificial induction of sprouts, what would prevent the death of the individual.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física