7 resultados para Hexagonal boron nitride
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure.
Resumo:
The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.
Resumo:
A chemical-specific photoelectron diffraction structure determination of a carbon rich buffer layer on SiC is reported. In addition to the long-range ripple of this surface, a local buckling in the hexagonal sublattice, which breaks the local range order symmetry, was unraveled.
Resumo:
A stereoselective total synthesis of (-)-cryptocaryol A () is described. Key features of the 17-step route include the use of three boron-mediated aldol reaction-reduction sequences to control all stereocenters and an Ando modification of the Horner-Wadsworth-Emmons olefination that permitted the installation of the Z double bond of the α-pyrone ring.
Resumo:
High levels of substrate-based 1,5-stereoinduction are obtained in the boron-mediated aldol reactions of beta-oxygenated methyl ketones with achiral and chiral aldehydes. Remote induction from the boron enolates gives the 1,5-anti adducts, with the enolate pi-facial selectivity critically dependent upon the nature of the beta-alkoxy protecting group. This 1,5-anti aldol methodology has been strategically employed in the total synthesis of several natural products. At present, the origin of the high level of 1,5-anti induction obtained with the boron enolates is unclear, although a model based on a hydrogen bonding between the alkoxy oxygen and the formyl hydrogen has been recently proposed.
Resumo:
The aggregation behavior of the non-ionic surfactant Renex-100 in aqueous solutions and mesophases was evaluated by SAXS in a wide range of concentrations, between 20 and 30 °C. Complementary, water interactions were defined by DSC curves around 0°C. SAXS showed that the system undergoes the following phase transitions, from diluted to concentrated aqueous solutions: 1) isotropic solution of Renex aggregates; 2) hexagonal mesophase; 3) lamellar mesophase; and 4) isotropic solution. DSC analysis indicated the presence of interfacial water above 70wt%, which agreed with the segregation of free water to form the structural mesophases observed by SAXS bellow this concentration.
Resumo:
A trial was carried out to evaluate the chemical composition in the aerial part of lettuce, cv. 'Elisa', irrigated with wastewater treated with constructed wetland and source deposit water, grown on a Rhodic Hapludox Soil, using the irrigation systems sprinkle, subsurface drip and surface drip irrigation. The experiment was carried out from August 17th to October 3rd of 2001 and the chemical analyses of the lettuce were accomplished to 47 days after transplanting of the seedling. The aerial part of the lettuce was analyzed as for the levels of total nitrogen, nitrate, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, zinc, sodium, boron, cobalt and molybdenum. The sodium and the sulfur presented higher levels than the maximum suitable in the aerial part of the lettuce and the smallest level of magnesium, while other chemical elements analyzed were normal and appropriate considering the standard for well-nourished plants, not being influenced by the water type. The sodium was the chemical element that presented the highest levels in the aerial part of the lettuce in the treatments irrigated with wastewater, presenting significant difference in relationship to the treatments irrigated with source deposit water in the three irrigation systems. The use of the different irrigation systems by the application of wastewater treated with constructed wetland did not interfere in the levels of nutrients in the aerial part of the lettuce.