10 resultados para Antibacterial peptides
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
To evaluate the antimicrobial efficacy of Clearfil SE Protect (CP) and Clearfil SE Bond (CB) after curing and rinsed against five individual oral microorganisms as well as a mixture of bacterial culture prepared from the selected test organisms. Bacterial suspensions were prepared from single species of Streptococcus mutans, Streptococcus sobrinus, Streptococcus gordonii, Actinomyces viscosus and Lactobacillus lactis, as well as mixed bacterial suspensions from these organisms. Dentin bonding system discs (6 mm×2 mm) were prepared, cured, washed and placed on the bacterial suspension of single species or multispecies bacteria for 15, 30 and 60 min. MTT, Live/Dead bacterial viability (antibacterial effect), and XTT (metabolic activity) assays were used to test the two dentin system's antibacterial effect. All assays were done in triplicates and each experiment repeated at least three times. Data were submitted to ANOVA and Scheffe's f-test (5%). Greater than 40% bacteria killing was seen within 15 min, and the killing progressed with increasing time of incubation with CP discs. However, a longer (60 min) period of incubation was required by CP to achieve similar antimicrobial effect against mixed bacterial suspension. CB had no significant effect on the viability or metabolic activity of the test microorganisms when compared to the control bacterial culture. CP was significantly effective in reducing the viability and metabolic activity of the test organisms. The results demonstrated the antimicrobial efficacy of CP both on single and multispecies bacterial culture. CP may be beneficial in reducing bacterial infections in cavity preparations in clinical dentistry.
Resumo:
Spider venoms contain neurotoxic peptides aimed at paralyzing prey or for defense against predators; that is why they represent valuable tools for studies in neuroscience field. The present study aimed at identifying the process of internalization that occurs during the increased trafficking of vesicles caused by Phoneutria nigriventer spider venom (PNV)-induced blood-brain barrier (BBB) breakdown. Herein, we found that caveolin-1α is up-regulated in the cerebellar capillaries and Purkinje neurons of PNV-administered P14 (neonate) and 8- to 10-week-old (adult) rats. The white matter and granular layers were regions where caveolin-1α showed major upregulation. The variable age played a role in this effect. Caveolin-1 is the central protein that controls caveolae formation. Caveolar-specialized cholesterol- and sphingolipid-rich membrane sub-domains are involved in endocytosis, transcytosis, mechano-sensing, synapse formation and stabilization, signal transduction, intercellular communication, apoptosis, and various signaling events, including those related to calcium handling. PNV is extremely rich in neurotoxic peptides that affect glutamate handling and interferes with ion channels physiology. We suggest that the PNV-induced BBB opening is associated with a high expression of caveolae frame-forming caveolin-1α, and therefore in the process of internalization and enhanced transcytosis. Caveolin-1α up-regulation in Purkinje neurons could be related to a way of neurons to preserve, restore, and enhance function following PNV-induced excitotoxicity. The findings disclose interesting perspectives for further molecular studies of the interaction between PNV and caveolar specialized membrane domains. It proves PNV to be excellent tool for studies of transcytosis, the most common form of BBB-enhanced permeability.
Resumo:
Islet neogenesis-associated protein (INGAP) is a peptide found in pancreatic exocrine-, duct- and islet- non-β-cells from normal hamsters. Its increase induced by either its exogenous administration or by the overexpression of its gene enhances β-cell secretory function and increases β-cell mass by a combination of stimulation of cell replication and islet neogenesis and reduction of β-cell apoptosis. We studied the potential modulatory role of endogenous INGAP in insulin secretion using two different experimental approaches. Hamster islets transfected with INGAP-small interfering RNA (INGAP-siRNA) were used to study glucose-stimulated insulin secretion (GSIS). In parallel, freshly isolated islets were incubated with high glucose and the same concentration of either a specific anti-INGAP rabbit serum or normal rabbit serum. INGAP-siRNA transfected islets reduced their INGAP mRNA and protein content by 35.1% and 47.2%, respectively whereas GSIS decreased by 25.8%. GSIS by transfected islets attained levels comparable to those recorded in control islets when INGAP pentadecapeptide (INGAP-PP) was added to the culture medium. INGAP antibody in the medium decreased significantly GSIS in a dose-dependent manner. These results indicate that endogenous INGAP plays a physiological positive modulatory role in insulin secretion, supporting its possible use in the treatment of prediabetes and Type 2 diabetes.
Resumo:
Photodynamic therapy (PDT) has been proven to be effective in disinfecting root canals. The aim of this present study was to evaluate the effects of PDT on the viability of Enterococcus faecalis using methylene blue (MB) and malachite green (MG) as photosensitizers. Solutions containing E. faecalis (ATCC 29212) were prepared and harvested by centrifugation to obtain cell suspensions, which were mixed with MB and MG. Samples were individually irradiated by the diode laser at a distance of 1mm for 30, 60, or 120 seconds. Colonyforming units (CFU) were determined for each treatment. PDT for 60 and 120 seconds with MG reduced E. faecalis viability significantly. Similar results were obtained when MB was used as photosensitizer. PDT using MB and MG have antibacterial effect against E. faecalis, showing potential to be used as an adjunctive antimicrobial procedure in endodontic therapy.
Resumo:
This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10min. Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity.
Resumo:
Chemical cross-linking has emerged as a powerful approach for the structural characterization of proteins and protein complexes. However, the correct identification of covalently linked (cross-linked or XL) peptides analyzed by tandem mass spectrometry is still an open challenge. Here we present SIM-XL, a software tool that can analyze data generated through commonly used cross-linkers (e.g., BS3/DSS). Our software introduces a new paradigm for search-space reduction, which ultimately accounts for its increase in speed and sensitivity. Moreover, our search engine is the first to capitalize on reporter ions for selecting tandem mass spectra derived from cross-linked peptides. It also makes available a 2D interaction map and a spectrum-annotation tool unmatched by any of its kind. We show SIM-XL to be more sensitive and faster than a competing tool when analyzing a data set obtained from the human HSP90. The software is freely available for academic use at http://patternlabforproteomics.org/sim-xl. A video demonstrating the tool is available at http://patternlabforproteomics.org/sim-xl/video. SIM-XL is the first tool to support XL data in the mzIdentML format; all data are thus available from the ProteomeXchange consortium (identifier PXD001677).
Resumo:
Essential oil from the leaves of Guatteria australis was obtained by hydrodistillation, analyzed by Gas Chromatography coupled to Mass Spectromery (GC-MS) and their antiproliferative, antileishmanial, antibacterial, antifungal and antioxidant activities were also evaluated. Twenty-three compounds were identified among which germacrene B (50.66%), germacrene D (22.22%) and (E)-caryophyllene (8.99%) were the main compounds. The highest antiproliferative activity was observed against NCI-ADR/RES (TGI = 31.08 μg/ml) and HT-29 (TGI = 32.81 μg/ml) cell lines. It also showed good antileishmanial activity against Leishmania infantum (IC50 = 30.71 μg/ml). On the other hand, the oil exhibited a small effect against Staphylococcus aureus ATCC 6538, S. aureus ATCC 14458 and Escherichia coli ATCC 10799 (MIC = 250 μg/ml), as well as small antioxidant activity (457 μmol TE/g) assessed through ORACFL assay. These results represent the first report regarding chemical composition and bioactivity of G. australis essential oil.
Resumo:
In recent years, the scientific community has undertaken research on plant extracts, searching for compounds with pharmacological activities that can be used in diverse fields of medicine. Calendula officinalis L. is known to have antioxidant, anti-inflammatory, antibacterial, and wound healing properties when used to treat skin burns. Therefore, the purpose of this study was to analyze the effects of C. officinalis on the initial phase of Achilles tendon healing. Wistar rats were separated in three groups: Calendula (Cal)-rats with a transected tendon were treated with topical applications of C. officinalis cream and then euthanized 7 days after injury; Control (C)-rats were treated with only vehicle after transection; and Normal (N)-rats without tenotomy. Higher concentrations of hydroxyproline (an indicator of total collagen) and non-collagenous proteins were observed in the Cal group in relation to the C group. Zymography showed no difference in the amount of the isoforms of metalloproteinase-2 and of metalloproteinase-9, between C and Cal groups. Polarization microscopy images analysis showed that the Cal group presented a slightly higher birefringence compared with the C group. In sections of tendons stained with toluidine blue, the transected groups presented higher metachromasy as compared with the N group. Immunocytochemistry analysis for chondroitin-6-sulfate showed no difference between the C and Cal groups. In conclusion, the topical application of C. officinalis after tendon transection increases the concentrations of collagen and non-collagenous proteins, as well as the collagen organization in the initial phase of healing.
Resumo:
The composition and biological activities of propolis, a resinous hive product collected by honeybees from various plant sources, depends on various factors such as season and vegetation of the area. The aim of this study was to evaluate the influence of the seasonal effect on the ethanolic extracts of Brazilian propolis (EEP) type 6 and type 12, collected during 6 months in terms of antibacterial activity and phenolic composition. The antimicrobial properties were evaluated by MIC and MBC on S. mutans Ingbritt 1600 and the profile of chemical composition by UV-visible spectrophotometry, HPLC-RF and GC-MS. The results demonstrated that the season in which propolis is collected influences its chemical composition, resulting in modifications in its antibacterial activity.
Resumo:
OBJECTIVE: To analyze if female Wistar rats at 56 weeks of age are a suitable model to study osteoporosis. MATERIALS AND METHODS: Female rats with 6 and 36 weeks of age (n = 8 per group) were kept over a 20-week period and fed a diet for mature rodents complete in terms of Ca, phosphorous, and vitamin D. Excised femurs were measured for bone mass using dual-energy x-ray absorptiometry, morphometry, and biomechanical properties. The following serum mar-kers of bone metabolism were analyzed: parathyroid hormone (PTH), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor Κappa B ligand (RANKL), C-terminal peptides of type I collagen (CTX-I), total calcium, and alkaline phosphatase (ALP) activity. RESULTS: Rats at 56 weeks of age showed important bone metabolism differences when compared with the younger group, such as, highest diaphysis energy to failure, lowest levels of OC, CTX-I, and ALP, and elevated PTH, even with adequate dietary Ca. CONCLUSION: Rats at 26-week-old rats may be too young to study age-related bone loss, whereas the 56-week-old rats may be good models to represent the early stages of age-related changes in bone metabolism.