29 resultados para 3 Comorbidity Indexes
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Maternal mortality (MM) is a core indicator of disparities in women's rights. The study of Near Miss cases is strategic to identifying the breakdowns in obstetrical care. In absolute numbers, both MM and occurrence of eclampsia are rare events. We aim to assess the obstetric care indicators and main predictors for severe maternal outcome from eclampsia (SMO: maternal death plus maternal near miss). Secondary analysis of a multicenter, cross-sectional study, including 27 centers from all geographic regions of Brazil, from 2009 to 2010. 426 cases of eclampsia were identified and classified according to the outcomes: SMO and non-SMO. We classified facilities as coming from low- and high-income regions and calculated the WHO's obstetric health indicators. SPSS and Stata softwares were used to calculate the prevalence ratios (PR) and respective 95% confidence interval (CI) to assess maternal characteristics, clinical and obstetrical history, and access to health services as predictors for SMO, subsequently correlating them with the corresponding perinatal outcomes, also applying multiple regression analysis (adjusted for cluster effect). Prevalence of and mortality indexes for eclampsia in higher and lower income regions were 0.2%/0.8% and 8.1%/22%, respectively. Difficulties in access to health care showed that ICU admission (adjPR 3.61; 95% CI 1.77-7.35) and inadequate monitoring (adjPR 2.31; 95% CI 1.48-3.59) were associated with SMO. Morbidity and mortality associated with eclampsia were high in Brazil, especially in lower income regions. Promoting quality maternal health care and improving the availability of obstetric emergency care are essential actions to relieve the burden of eclampsia.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
To assess the prevalence of Climacteric Syndrome (CS) in women from a municipality of Northeastern Brazil which is less developed socioeconomically. A prospective household survey was performed in São Luís, Maranhão, Brazil with 1,210 climacteric women aged 45 to 60 years. Interviews were applied using previously tested standard questionnaires from April to July 2008. The severity of climacteric symptoms was analyzed by circulatory and psychological indexes and the latter were associated with menopausal status. Multiple correspondence analysis was used to assess the relation among climacteric symptoms. Most patients were 55 to 60 years old (35.3%), mulatto (37.9%), with 9-11 years of schooling (39.8%), with a partner (56%), Catholic (73.9%) and belonged to the socioeconomic class C (51.1%). The prevalence of CS was 85.9%, and hot flashes (56.4%) and sweating (50.4%) were the most prevalent symptoms. The most frequent psychological symptoms were nervousness (45%) and emotional liability (44.8%). The severity of vasomotor and psychological symptoms was significantly higher during the peri and postmenopausal period (p<0.05). Vaginal dryness (62.7%) was the most prevalent urogenital complaint. The prevalence of CS was high among women from São Luís, Maranhão, Brazil.
Resumo:
Twelve novel 8-hydroxyquinoline derivatives were synthesized with good yields by performing copper-catalyzed Huisgen 1,3-dipolar cycloaddition (click reaction) between an 8-O-alkylated-quinoline containing a terminal alkyne and various aromatic or protected sugar azides. These compounds were evaluated in vitro for their antiproliferative activity on various cancer cell types. Protected sugar derivative 16 was the most active compound in the series, exhibiting potent antiproliferative activity and high selectivity toward ovarian cancer cells (OVCAR-03, GI50 < 0.25 μg mL(-1)); this derivative was more active than the reference drug doxorubicin (OVCAR-03, GI50 = 0.43 μg mL(-1)). In structure-activity relationship (SAR) studies, the physico-chemical parameters of the compounds were evaluated and docking calculations were performed for the α-glucosidase active site to predict the possible mechanism of action of this series of compounds.
Resumo:
A new enantioselective Heck-Matsuda desymmetrization reaction was accomplished by using 3-cyclopentenol to produce chiral five-membered 4-aryl cyclopentenol scaffolds in good yields and high ee's, together with some 3-aryl-cyclopentanones as minor products. Mechanistically, the hydroxyl group of 3-cyclopentenol acts as a directing group and is responsible for the cis- arrangement in the formation of the 4-aryl-cyclopentenols.
Resumo:
Bisphenol A (BPA) is a chemical that has been investigated for it potential to cause prostate diseases. In this study, pregnant Sprague-Dawley rats were treated with 25 or 250 μg/kg BPA from gestational day (GD) 10 to GD21 with or without concurrent indole-3-carbinol (I3C) feeding. I3C is a phytochemical, and it affords chemoprotection against many types of neoplasia. Male F1 rats from different litters were euthanized on post-natal day (PND) 21 and PND180. BPA-treated groups showed a significant increase in histopathological lesions, but I3C feeding reversed many of these changes, mainly at PND180. Maternal I3C feeding increased prostate epithelial apoptosis in the BPA-treated groups and across age groups. Furthermore, I3C induced partial normalization of the prostate histoarchitecture. The results pointed to a protective effect of maternal I3C feeding during pregnancy in the BPA-exposed male offspring, thereby indicating reduction in the harmful effects of gestational BPA imprinting on the prostate.
Resumo:
In the title compound, C17H15NO4, the conformation about the C=C double bond [1.348 (2) Å] is E with the ketone group almost co-planar [C-C-C-C torsion angle = 7.2 (2)°] but the phenyl group twisted away [C-C-C-C = 160.93 (17)°]. The terminal aromatic rings are almost perpendicular to each other [dihedral angle = 81.61 (9)°] giving the mol-ecule an overall U-shape. The crystal packing feature benzene-C-H⋯O(ketone) contacts that lead to supra-molecular helical chains along the b axis. These are connected by π-π inter-actions between benzene and phenyl rings [inter-centroid distance = 3.6648 (14) Å], resulting in the formation of a supra-molecular layer in the bc plane.
Resumo:
In the title compound, C17H14N2O6, the conformation about the C=C double bond [1.345 (2) Å] is E, with the ketone moiety almost coplanar [C-C-C-C torsion angle = 9.5 (2)°] along with the phenyl ring [C-C-C-C = 5.9 (2)°]. The aromatic rings are almost perpendicular to each other [dihedral angle = 86.66 (7)°]. The 4-nitro moiety is approximately coplanar with the benzene ring to which it is attached [O-N-C-C = 4.2 (2)°], whereas the one in the ortho position is twisted [O-N-C-C = 138.28 (13)°]. The mol-ecules associate via C-H⋯O inter-actions, involving both O atoms from the 2-nitro group, to form a helical supra-molecular chain along [010]. Nitro-nitro N⋯O inter-actions [2.8461 (19) Å] connect the chains into layers that stack along [001].
Resumo:
Galectin-3 (gal-3) is a β-galactoside binding protein related to many tumoral aspects, e.g. angiogenesis, cell growth and motility and resistance to cell death. Evidence has shown its upregulation upon hypoxia, a common feature in solid tumors such as glioblastoma multiformes (GBM). This tumor presents a unique feature described as pseudopalisading cells, which accumulate large amounts of gal-3. Tumor cells far from hypoxic/nutrient deprived areas express little, if any gal-3. Here, we have shown that the hybrid glioma cell line, NG97ht, recapitulates GBM growth forming gal-3 positive pseudopalisades even when cells are grafted subcutaneously in nude mice. In vitro experiments were performed exposing these cells to conditions mimicking tumor areas that display oxygen and nutrient deprivation. Results indicated that gal-3 transcription under hypoxic conditions requires previous protein synthesis and is triggered in a HIF-1α and NF-κB dependent manner. In addition, a significant proportion of cells die only when exposed simultaneously to hypoxia and nutrient deprivation and demonstrate ROS induction. Inhibition of gal-3 expression using siRNA led to protein knockdown followed by a 1.7-2.2 fold increase in cell death. Similar results were also found in a human GBM cell line, T98G. In vivo, U87MG gal-3 knockdown cells inoculated subcutaneously in nude mice demonstrated decreased tumor growth and increased time for tumor engraftment. These results indicate that gal-3 protected cells from cell death under hypoxia and nutrient deprivation in vitro and that gal-3 is a key factor in tumor growth and engraftment in hypoxic and nutrient-deprived microenvironments. Overexpression of gal-3, thus, is part of an adaptive program leading to tumor cell survival under these stressing conditions.
Resumo:
A series of novel 1-(substituted phenyl)-3-(2-oxo-1,3,4-oxadiazol-5-yl) β-carbolines (4a-e) and the corresponding Mannich bases 5-9(a-c) were synthesized and evaluated for their in vitro antitumor activity against seven human cancer cell lines. Compounds of 4a-e series showed a broad spectrum of antitumor activity, with GI50 values lower than 15μM for five cell lines. The derivative 4b, having the N,N-dimethylaminophenyl group at C-1, displayed the highest activity with GI50 in the range of 0.67-3.20μM. A high selectivity and potent activity were observed for some Mannich bases, particularly towards resistant ovarian (NCI-ADR/RES) cell lines (5a, 5b, 6a, 6c and 9b), and ovarian (OVCAR-03) cell lines (5b, 6a, 6c, 9a, 9b and 9c). In addition, the interaction of compound 4b with DNA was investigated by using UV and fluorescence spectroscopic analysis. These studies indicated that 4b interact with ctDNA by intercalation binding.
Resumo:
Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch). The p.N540K mutation in the FGFR3 gene occurs in ∼70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control) individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34). One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C' had a typical achondroplasia (Ach) phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.
Resumo:
Maxillofacial trauma resulting from falls in elderly patients is a major social and health care concern. Most of these traumatic events involve mandibular fractures. The aim of this study was to analyze stress distributions from traumatic loads applied on the symphyseal, parasymphyseal, and mandibular body regions in the elderly edentulous mandible using finite-element analysis (FEA). Computerized tomographic analysis of an edentulous macerated human mandible of a patient approximately 65 years old was performed. The bone structure was converted into a 3-dimensional stereolithographic model, which was used to construct the computer-aided design (CAD) geometry for FEA. The mechanical properties of cortical and cancellous bone were characterized as isotropic and elastic structures, respectively, in the CAD model. The condyles were constrained to prevent free movement in the x-, y-, and z-axes during simulation. This enabled the simulation to include the presence of masticatory muscles during trauma. Three different simulations were performed. Loads of 700 N were applied perpendicular to the surface of the cortical bone in the symphyseal, parasymphyseal, and mandibular body regions. The simulation results were evaluated according to equivalent von Mises stress distributions. Traumatic load at the symphyseal region generated low stress levels in the mental region and high stress levels in the mandibular neck. Traumatic load at the parasymphyseal region concentrated the resulting stress close to the mental foramen. Traumatic load in the mandibular body generated extensive stress in the mandibular body, angle, and ramus. FEA enabled precise mapping of the stress distribution in a human elderly edentulous mandible (neck and mandibular angle) in response to 3 different traumatic load conditions. This knowledge can help guide emergency responders as they evaluate patients after a traumatic event.
Resumo:
The main aim of this investigation was to verify the relationship of the variables measured during a 3-minute all-out test with aerobic (i.e., peak oxygen uptake [(Equation is included in full-text article.)] and intensity corresponding to the lactate minimum [LMI]) and anaerobic parameters (i.e., anaerobic work) measured during a 400-m maximal performance. To measure force continually and to avoid the possible influences caused by turns, the 3-minute all-out effort was performed in tethered swimming. Thirty swimmers performed the following tests: (a) a 3-minute all-out tethered swimming test to determine the final force (equivalent to critical force: CF3-MIN) and the work performed above CF3-MIN (W'3-MIN), (b) a LMI protocol to determine the LMI during front crawl swimming, and (c) a 400-m maximal test to determine the (Equation is included in full-text article.)and total anaerobic contribution (WANA). Correlations between the variables were tested using the Pearson's correlation test (p ≤ 0.05). CF3-MIN (73.9 ± 13.2 N) presented a high correlation with the LMI (1.33 ± 0.08 m·s; p = 0.01) and (Equation is included in full-text article.)(4.5 ± 1.2 L·min; p = 0.01). However, the W'3-MIN (1,943.2 ± 719.2 N·s) was only moderately correlated with LMI (p = 0.02) and (Equation is included in full-text article.)(p = 0.01). In summary, CF3-MIN determined during the 3-minute all-out effort is associated with oxidative metabolism and can be used to estimate the aerobic capacity of swimmers. In contrast, the anaerobic component of this model (W'3-MIN) is not correlated with WANA.
Resumo:
A capillary zone electrophoresis (CE) method was developed for the determination of the biocide 2,2-dibromo-3-nitrilo-propionamide (DBNPA) in water used in cooling systems. The biocide is indirectly determined by CE measurement of the concentration of bromide ions produced by the reaction between the DBNPA and bisulfite. The relationship between the bromide peak areas and the DBNPA concentrations showed a good linearity and a coefficient of determination (R(2)) of 0.9997 in the evaluated concentration range of 0-75 μmol L(-1). The detection and quantification limits for DBNPA were 0.23 and 0.75 μmol L(-1), respectively. The proposed CE method was successfully applied for the analysis of samples of tap water and cooling water spiked with DBNPA. The intra-day and inter-day (intermediary) precisions were lower than 2.8 and 6.2%, respectively. The DBNPA concentrations measured by the CE method were compared to the values obtained by a spectrophotometric method and were found to agree well.
Resumo:
Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), IFN-β, or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death whereas wild-type (WT) congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV virus infection and tissue injury, and suggest that IFN signaling in non-myeloid cells contributes to the host defense against orthobunyaviruses. Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.