349 resultados para Absorption Detection

em Scielo Saúde Pública - SP


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the considerable environmental importance of mercury (Hg), given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique), were used in validation of the method, which proved to be accurate and precise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple cloud point extraction procedure is presented for the preconcentration of copper in various samples. After complexation by 4-hydroxy-2-mercapto-6-propylpyrimidine (PTU), copper ions are quantitatively extracted into the phase rich in Triton X-114 after centrifugation. Methanol acidified with 0.5 mol L-1 HNO3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). Analytical parameters including concentrations for PTU, Triton X-114 and HNO3, bath temperature, centrifugation rate and time were optimized. The influences of the matrix ions on the recoveries of copper ions were investigated. The detection limits (3SDb/m, n=4) of 1.6 ng mL-1 along with enrichment factors of 30 for Cu were achieved. The proposed procedure was applied to the analysis of environmental samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An evaluation of the performance of a continuous flow hydride generator-nebulizer for flame atomic absorption spectrometry was carried out. Optimization of nebulizer gas flow rate, sample acid concentration, sample and tetrahydroborate uptake rates and reductant concentration, on the As and Se absorbance signals was carried out. A hydrogen-argon flame was used. An improvement of the analytical sensitivity relative to the conventional bead nebulizer used in flame AA was obtained (2 (As) and 4.8 (Se) µg L-1). Detection limits (3σb) of 1 (As) and 1.3 (Se) µg L-1 were obtained. Accuracy of the method was checked by analyzing an oyster tissue reference material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method was developed for quantification of Cd and Pb in ethanol fuel by filter furnace atomic absorption spectrometry. Filter furnace was used to eliminate the need for chemical modification, to stabilize volatile analytes and to allow the application of short pyrolysis step. The determinations in samples were carried out against calibration solutions prepared in ethanol. Recovery tests were made in seven commercial ethanol fuel samples with values between 90 and 120%. Limits of detection were 0.1 µg L-1 for Cd and 0.3 µg L-1 for Pb. Certified water samples (APS 1071, APS 1033, NIST 1643d, NIST 1640) were also used to evaluate accuracy and recoveries from 86.8% to115% were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, the development of a method based on the coupling of flow analysis (FA), hydride generation (HG), and derivative molecular absorption spectrophotometry (D-EAM) in gas phase (GP), is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm) of the absorption spectrum (190 - 300 nm) is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and sensitive on-line flow injection system for determination of zinc with FAAS has been described. The method is based on the separation and preconcentration of zinc on a microcolumn of immobilized Alizarin Red S on alumina. The adsorbed analyte is then eluted with 250 µL of nitric acid (1 mol L-1) and is transported to flame atomic absorption spectrometer for quantification. The effect of pH, sample and eluent flow rates and presence of various cations and anions on the retention of zinc was investigated. The sorption of zinc was quantitative in the pH range of 5.5-8.5. For a sample volume of 25 mL an enrichment factor of 144 and a detection limit (3S) of 0.2 µg L-1 was obtained. The precision (RSD, n=7) was 3.0% at the 20 µg L-1 level. The developed system was successfully applied to the determination of zinc in water samples, hair, urine and saliva.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple ion pair-dispersive liquid-liquid microextraction method was proposed for preconcentration trace amounts of rhodium. An ion association complex of RhCl4- and tetradecyldimetylbenzylamonium was extracted into cholorobenzene. The volume and the type of extractive and dispersive solvents, the extraction time and the pH of the aqueous solutions were optimized. The calibration curve was linear in the range of 0.6-500 ng mL-1 of rhodium. The limit of detection was 0.10 ng mL-1 in initial solution and preconcentration factor was 40. The proposed method was successfully applied to the extraction and determination of rhodium in road dust and water samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simultaneous solid phase extraction procedure for enrichment of Cu(II), Cd(II) and Mn(II) has been developed. The method is based on adsorption of Cu(II), Cd(II) and Mn(II) ions on polyethylene glycol-silica gel pre-conditioned with acetate buffer (pH 5.5). The adsorbed metal ions are eluted with nitric acid (1 mol L -1) and determined by flame atomic absorption spectrometry. The calibration graph was linear in the range of 2-140 ng mL-1 for Cu(II), 1-40 ng mL-1 for Cd(II) and 4-100 ng mL-1 for Mn(II). The limits of detection were 0.66, 0.33 and 1.20 ng mL-1 for Cu(II), Cd(II) and Mn(II), respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous extraction of trace amounts of nickel, cobalt and copper followed by their determination with electrothermal atomic absorption spectrometry was developed. 300 µL of acetone and 1-undecanol was injected into an aqueous sample containing diethyldithiocarbamate complexes of metal ions. For a sample volume of 10 mL, enrichment factors of 277, 270 and 300 and detection limits of 1.2, 1.1 and 1 ng L-1 for nickel, cobalt and copper were obtained, respectively. The method was applied to the extraction and determination of these metals in different water samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple, sensitive and selective cloud point extraction procedure is described for the preconcentration and atomic absorption spectrometric determination of Zn2+ and Cd2+ ions in water and biological samples, after complexation with 3,3',3",3'"-tetraindolyl (terephthaloyl) dimethane (TTDM) in basic medium, using Triton X-114 as nonionic surfactant. Detection limits of 3.0 and 2.0 µg L-1 and quantification limits 10.0 and 7.0 µg L-1were obtained for Zn2+ and Cd2+ ions, respectively. Relative standard deviation was 2.9 and 3.3, and enrichment factors 23.9 and 25.6, for Zn2+ and Cd2+ ions, respectively. The method enabled determination of low levels of Zn2+ and Cd2+ ions in urine, blood serum and water samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a procedure is developed for cloud point extraction of Pd(II) and Rh(III) ions in aqueous solution using Span 80 (non-ionic surfactant) prior to their determination by flame atomic absorption spectroscopy. This method is based on the extraction of Pd(II) and Rh(III) ions at a pH of 10 using Span 80 with no chelating agent. We investigated the effect of various parameters on the recovery of the analyte ions, including pH, equilibration temperature and time, concentration of Span 80, and ionic strength. Under the best experimental conditions, the limits of detection based on 3Sb for Pd(II) and Rh(III) ions were 1.3 and 1.2 ng mL-1, respectively. Seven replicate determinations of a mixture of 0.5 µg mL-1 palladium and rhodium ions gave a mean absorbance of 0.058 and 0.053 with relative standard deviations of 1.8 and 1.6%, respectively. The developed method was successfully applied to the extraction and determination of the palladium and rhodium ions in road dust and standard samples and satisfactory results were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple preconcentration method of silicon based on coprecipitation with aluminum hydroxide prior to its flame atomic absorption (FAAS) determination was established. The recovery values of analyte ion was higher than 95%. The parameters including types of hydroxide ion source for precipitation, acid type for dissolution step, amount of aluminum ion as collector, pH, temperature, standing and centrifuge time, and sample volume were optimized for the quantitative recovery of the analyte. The influences of matrix ions were also examined. The relative standard deviation was found to be 3.2%. The limit of detection was calculated as (0.1 mg L-1). The preconcentration factor is 100 for (200 mL) solution. The proposed method was successfully applied for the determination of silicon in some water and alloy samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for the determination of trace amounts of palladium was developed using homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA) followed by graphite furnace atomic absorption spectrometry (GFAAS). Ammonium pyrrolidine dithiocarbamate (APDC) was used as a complexing agent. This was applied to determine palladium in three types of water samples. In this study, a special extraction cell was designed to facilitate collection of the low-density solvent extraction. No centrifugation was required in this procedure. The water sample solution was added to the extraction cell which contained an appropriate mixture of extraction and homogeneous solvents. By using air flotation, the organic solvent was collected at the conical part of the designed cell. Parameters affecting extraction efficiency were investigated and optimized. Under the optimum conditions, the calibration graph was linear in the range of 1.0-200 µg L-1 with a limit of detection of 0.3 µg L-1. The performance of the method was evaluated for the extraction and determination of palladium in water samples and satisfactory results were obtained. In order to verify the accuracy of the approach, the standard addition method was applied for the determination of palladium in spiked synthetic samples and satisfactory results were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A procedure for separation and preconcentration of trace amounts of Zn(II) from aqueous media is proposed. The procedure is based on the adsorption of Zn2+ on octadecyl bonded silica membrane disk modified with N,N'-disalicylidene-1,2-phenylendiamine at pH 7. The retained zinc ions were then stripped from the disk with a minimal amount of 1.5 mol L-1 hydrochloric acid solution as eluent, and determined by flame atomic absorption spectrometry. Maximum capacity of the membrane disk modified with 5 mg of the ligand was found to be 226 µg Zn2+. The relative standard deviation of zinc for ten replicate extraction of 10 µg zinc from 1000 mL samples was 1.2%. The limit of detection of the proposed method was 14 ng of Zn2+ per 1000 mL. The method was successfully applied to the determination of zinc in natural water samples and accuracy was examined by recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry (GFAAS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a new mathematical equation correction approach for overcoming spectral and transport interferences was proposed. The proposal was applied to eliminate spectral interference caused by PO molecules at the 217.0005 nm Pb line, and the transport interference caused by variations in phosphoric acid concentrations. Correction may be necessary at 217.0005 nm to account for the contribution of PO, since Atotal217.0005 nm = A Pb217.0005 nm + A PO217.0005 nm. This may be easily done by measuring other PO wavelengths (e.g. 217.0458 nm) and calculating the relative contribution of PO absorbance (A PO) to the total absorbance (Atotal) at 217.0005 nm: A Pb217.0005 nm = Atotal217.0005 nm - A PO217.0005 nm = Atotal217.0005 nm - k (A PO217.0458 nm). The correction factor k is calculated from slopes of calibration curves built up for phosphorous (P) standard solutions measured at 217.0005 and 217.0458 nm, i.e. k = (slope217.0005 nm/slope217.0458 nm). For wavelength integrated absorbance of 3 pixels, sample aspiration rate of 5.0 ml min-1, analytical curves in the 0.1 - 1.0 mg L-1 Pb range with linearity better than 0.9990 were consistently obtained. Calibration curves for P at 217.0005 and 217.0458 nm with linearity better than 0.998 were obtained. Relative standard deviations (RSD) of measurements (n = 12) in the range of 1.4 - 4.3% and 2.0 - 6.0% without and with mathematical equation correction approach were obtained respectively. The limit of detection calculated to analytical line at 217.0005 nm was 10 µg L-1 Pb. Recoveries for Pb spikes were in the 97.5 - 100% and 105 - 230% intervals with and without mathematical equation correction approach, respectively.