79 resultados para phase mismatching
Resumo:
The gas-phase ion-molecule reactions of the Me3SiN(H)SiMe2+ ion, obtained by electron ionization from Me3SiN(H)SiMe3, have been studied in a Fourier transform ion cyclotron resonance spectrometer in order to understand the mechanistic details of an important chemical system presently used in film formation. This silyl cation has been observed to undergo addition reactions at electron rich centers to form stable adducts that may undergo further methane elimination in the case of alcohols and amines. The most important feature of these reactions is the fact that a metathesis type reaction can be observed in the presence of H2O, and other hydrogen labile substrates like alcohols, leading to the formation of the corresponding oxygen-containing ion, i.e. Me3SiOSiMe2+. For alcohols (ROH), facile formation of a tertiary product ion, presumably corresponding to an Me3Si-O-Si(Me)=O+-R structure with elimination of an amine reveals the strong tendency of these nitrogen-containing ions to undergo metathesis type reactions with oxygen containing substrates.
Resumo:
Titania powders were synthesized by a sol-gel process using titanium tetrabutoxide as precursor. The syntheses were performed in water or in solutions of dimethylformamide (dmf) or dimethylsulfoxide (dmso). It is demonstrated, by X-ray diffraction patterns of the synthesized powders, that the samples obtained in dmf or dmso solutions are crystalline (anatase phase) with some minor amount of brookite phase, whereas the sample synthesized in water is amorphous. The anatase phase can be obtained independently of any previous or further treatment of the synthesized powder, such as hydrothermal or heat treatment, providing a new, simple, quick and inexpensive route to synthesize anatase powders. From the peak broadening of the anatase (101) diffraction, the crystallite sizes were calculated as 6 nm.
Resumo:
A solid phase extraction procedure using Amberlite XAD-1180/Pyrocatechol violet (PV) chelating resin for the determination of iron and lead ions in various environmental samples was established. The procedure is based on the sorption of lead(II) and iron(III) ions onto the resin at pH 9, followed by elution with 1 mol/L HNO3 and determination by flame atomic absorption spectrometry. The influence of alkaline, earth alkaline and some transition metals, as interferents, are discussed. The recoveries for the spiked analytes were greater than 95%. The detection limits for lead and iron by FAAS were 0.37 µg/L and 0.20 µg/L, respectively. Validation of the method described here was performed by using three certified reference materials (SRM 1515 Apple Leaves, SRM 2711 Montana Soil and NRCC-SLRS-4 Riverine Water). The procedure was successfully applied to natural waters and human hair.
Resumo:
Simulations have been carried out on the bromate - oxalic acid - Ce(IV) - acetone oscillating reaction, under flow conditions, using Field and Boyd's model (J. Phys. Chem. 1985, 89, 3707). Many different complex dynamic behaviors were found, including simple periodic oscillations, complex periodic oscillations, quasiperiodicity and chaos. Some of these complex oscillations can be understood as belonging to a Farey sequence. The many different behaviors were systematized in a phase diagram which shows that some regions of complex patterns were nested with one inside the other. The existence of almost all known dynamic behavior for this system allows the suggestion that it can be used as a model for some very complex phenomena that occur in biological systems.
Resumo:
The analytical method developed to evaluate tamoxifen in dog plasma samples was precise, accurate, robust and linear in the range of 5-200 ng/mL. The limits of detection and quantification were 0.981 ng/mL and 2.97 ng/mL, respectively. Besides, the intra-day precision and accuracy variations were 8.78 and 10.16%, respectively. Tamoxifen concentrations were analyzed by combined reversed phase liquid chromatography and UV detection (lambda=280 nm). The study was conducted using an open randomized 2-period crossover balanced design with a 1-week washout period between the doses. This simple, rapid and selective method is suitable for pharmacokinetic, bioavailability and bioequivalence studies.
Resumo:
The present work analyzed the effect of the temperature and type of salt on the phase equilibrium of aqueous two-phase systems (ATPS) formed by poly (ethylene glycol) (PEG) 1500 + potassium phosphate, from (278.15 to 318.15) K, and PEG 1500 + sodium citrate, from (278.15 to 298.15) K. The rise of the temperature normally increased the slope of the tie line (STL). With respect to the influence of the type of salt, sodium citrate showed better capability to induce phase separation, when compared to potassium phosphate.
Resumo:
A liquid chromatography-tandem mass spectrometry method with atmospheric pressure chemical ionization (LC-APCI/MS/MS) was validated for the determination of etoricoxib in human plasma using antipyrin as internal standard, followed by on-line solid-phase extraction. The method was performed on a Luna C18 column and the mobile phase consisted of acetonitrile:water (95:5, v/v)/ammonium acetate (pH 4.0; 10 mM), run at a flow rate of 0.6 mL/min. The method was linear in the range of 1-5000 ng/mL (r²>0.99). The lower limit of quantitation was 1 ng/mL. The recoveries were within 93.72-96.18%. Moreover, method validation demonstrated acceptable results for the precision, accuracy and stability studies.
Resumo:
In this work, we provide an investigation of the role and strength of affinity interactions on the partitioning of the glucose-6-phosphate dehydrogenase in aqueous two-phase micellar systems. These systems are constituted of micellar surfactant solutions and offer both hydrophobic and hydrophilic environments, providing selectivity to biomolecules. We studied G6PD partitioning in systems composed of the nonionic surfactants, separately, in the presence and absence of affinity ligands. We observed that G6PD partitions to the micelle-poor phase, owing to the strength of excluded-volume interactions in these systems that drive the protein to the micelle-poor phase, where there is more free volume available.
Resumo:
In the present work, the development of a method based on the coupling of flow analysis (FA), hydride generation (HG), and derivative molecular absorption spectrophotometry (D-EAM) in gas phase (GP), is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm) of the absorption spectrum (190 - 300 nm) is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.
Resumo:
The product of catalytic activity of the enzyme phospholipase A2, which resembles the core unit of animal toxins, on phospholipids is a 1:1 mixture of lysolipid and fatty acid. This mixture was studied by time-resolved simultaneous small- and wide angle x-ray diffraction over the temperature range from 23 to 53.5ºC. An unusually large lamellar structure was observed, with d = 11 nm, contradicting the complex functional dimer model between lysolipid and fatty acid. It can be explained by formation of a "double-bilayer", a new phase consisting of two different bilayers, one formed by lysophospholipid and other by fatty acid, bound together by head group interactions. Its strucutre was confirmed by simulations of the X-ray scattering pattern.
Resumo:
Determination of free urinary cortisol is a test of choice in the diagnosis of Cushing's syndrome. In this study, cortisol was quantified using reversed-phase high-performance liquid chromatography (RP-HPLC) in urine samples previously extracted with ether and using triamcinolone acetonide as internal standard (IS). A BDS-Hypersil-C18® column, water-acetonitrile (72:28; v/v), with a flow rate of 1.0 mL/min and detection at 243 nm were used. This method showed to be both effective and efficient, with sensitivity and linearity ranging from 2.50 to 150 μg/L, and can be used in substitution to the radioimmunoassay technique within this concentration range.
Resumo:
A dissolution test for in vitro evaluation of tablet dosage forms containing 10 mg of rupatadine was developed and validated by RP-LC. A discriminatory dissolution method was established using apparatus paddle at a stirring rate of 50 rpm with 900 mL of deaerated 0.01 M hydrochloric acid. The proposed method was validated yielding acceptable results for the parameters evaluated, and was applied for the quality control analysis of rupatadine tablets, and to evaluate the formulation during an accelerated stability study. Moreover, quantitative analyses were also performed, to compare the applicability of the RP-LC and the LC-MS/MS methods.
Resumo:
Gas-phase SiCl3+ ions undergo sequential solvolysis type reactions with water, methanol, ammonia, methylamine and propylene. Studies carried out in a Fourier Transform mass spectrometer reveal that these reactions are facile at 10-8 Torr and give rise to substituted chlorosilyl cations. Ab initio and DFT calculations reveal that these reactions proceed by addition of the silyl cation to the oxygen or nitrogen lone pair followed by a 1,3-H migration in the transition state. These transition states are calculated to lie below the energy of the reactants. By comparison, hydrolysis of gaseous CCl3+ is calculated to involve a substantial positive energy barrier.
Resumo:
A neural network procedure to solve inverse chemical kinetic problems is discussed in this work. Rate constants are calculated from the product concentration of an irreversible consecutive reaction: the hydrogenation of Citral molecule, a process with industrial interest. Simulated and experimental data are considered. Errors in the simulated data, up to 7% in the concentrations, were assumed to investigate the robustness of the inverse procedure. Also, the proposed method is compared with two common methods in nonlinear analysis; the Simplex and Levenberg-Marquardt approaches. In all situations investigated, the neural network approach was numerically stable and robust with respect to deviations in the initial conditions or experimental noises.
Resumo:
A method using Liquid Phase Microextraction for simultaneous detection of citalopram (CIT), paroxetine (PAR) and fluoxetine (FLU), using venlafaxine as internal standard, in plasma by high performance liquid chromatography with fluorescence detection was developed. The linearity was evaluated between 5.0 and 500 ng mL-1 (r > 0.99) and the limit of quantification was 2.0, 3.0 and 5.0 ng mL-1 for CIT, PAR and FLU, respectively. Therefore, it can be applied to therapeutic drug monitoring, pharmacokinetics or bioavailability studies and its advantages are that it necessary relatively inexpensive equipment and sample preparation techniques.