88 resultados para Subpixel precision
Resumo:
Abstract:The objective of this work was to develop and validate a prognosis system for volume yield and basal area of intensively managed loblolly pine (Pinus taeda) stands, using stand and diameter class models compatible in basal area estimates. The data used in the study were obtained from plantations located in northern Uruguay. For model validation without data loss, a three-phase validation scheme was applied: first, the equations were fitted without the validation database; then, model validation was carried out; and, finally, the database was regrouped to recalibrate the parameter values. After the validation and final parameterization of the models, a simulation of the first commercial thinning was carried out. The developed prognosis system was precise and accurate in estimating basal area production per hectare or per diameter classes. There was compatibility in basal area estimates between diameter class and whole stand models, with a mean difference of -0.01 m2ha-1. The validation scheme applied is logic and consistent, since information on the accuracy and precision of the models is obtained without the loss of any information in the estimation of the models' parameters.
Resumo:
Abstract:The objective of this work was to evaluate whether a canopy sensor is capable of estimating sugarcane response to N, as well as to propose strategies for handling the data generated by this device during the decision-making process for crop N fertilization. Four N rate-response experiments were carried out, with N rates varying from 0 to 240 kg ha-1. Two evaluations with the canopy sensor were performed when the plants reached average stalk height of 0.3 and 0.5 m. Only two experiments showed stalk yield response to N rates. The canopy sensor was able to identify the crop response to different N rates and the relationship of the nutrient with sugarcane yield. The response index values obtained from the canopy sensor readings were useful in assessing sugarcane response to the applied N rate. Canopy reflectance sensors can help to identify areas responsive to N fertilization and, therefore, improve sugarcane fertilizer management.
Resumo:
Sap flow could be used as physiological parameter to assist irrigation of screen house citrus nursery trees by continuous water consumption estimation. Herein we report a first set of results indicating the potential use of the heat dissipation method for sap flow measurement in containerized citrus nursery trees. 'Valencia' sweet orange [Citrus sinensis (L.) Osbeck] budded on 'Rangpur' lime (Citrus limonia Osbeck) was evaluated for 30 days during summer. Heat dissipation probes and thermocouple sensors were constructed with low-cost and easily available materials in order to improve accessibility of the method. Sap flow showed high correlation to air temperature inside the screen house. However, errors due to natural thermal gradient and plant tissue injuries affected measurement precision. Transpiration estimated by sap flow measurement was four times higher than gravimetric measurement. Improved micro-probes, adequate method calibration, and non-toxic insulating materials should be further investigated.
Resumo:
In the last 30 years world population has increased 70% but per capita global fruit consumption is only 20% higher. Even though tropical and temperate fruit have similar contributions to the 50 kg/person/year of US consumption of fresh fruit, in the last 30 years this has been slightly greater for temperate fruit. Within fruit consumption, the largest expansion has been for organic fruit which increased more than 50% in the 2002-2006 period. The largest expansion of area planted in the 1996-2006 has been for kiwi (29%) and blueberries (20%), while apples (-24%) and sour cherries (-13%) have had the largest reductions. Nearly 50% of the total global volume of fruit is produced by 5 countries: China, USA, Brazil, Italy and Spain. The main producer (China) accounts for 23% of the total. While the main exporters are Spain, USA and Italy, the main importers are Germany, Russia and UK. Demands for the industry have evolved towards quality, food safety and traceability. The industry faces higher productions costs (labor, energy, agrichemicals). The retailers are moving towards consolidation while the customers are changing preferences (food for health). In this context there is greater pressure on growers, processors and retailers. Emerging issues are labor supply, climate change, water availability and sustainability. Recent developments in precision agriculture, molecular biology, phenomics, crop modelling and post harvest physiology should increase yields and quality, and reduce costs for temperate fruit production around the world.
Resumo:
The current high competition on Citrus industry demands from growers new management technologies for superior efficiency and sustainability. In this context, precision agriculture (PA) has developed techniques based on yield mapping and management systems that recognize field spatial variability, which contribute to increase profitability of commercial crops. Because spatial variability is often not perceived the orange orchards are still managed as uniform and adoption of PA technology on citrus farms is low. Thus, the objective of the present study was to characterize the spatial variability of three factors: fruit yield, soil fertility and occurrence of plant gaps caused by either citrus blight or huanglongbing (HLB) in a commercial Valencia orchard in Brotas, São Paulo State, Brazil. Data from volume, geographic coordinates and representative area of the bags used on harvest were recorded to generate yield points that were then interpolated to produce the yield map. Soil chemical characteristics were studied by analyzing samples collected along planting rows and inter-rows in 24 points distributed in the field. A map of density of tree gaps was produced by georeferencing individual gaps and later by counting the number of gaps within 500 m² cells. Data were submitted to statistical and geostatistical analyses. A t test was used to compare means of soil chemical characteristics between sampling regions. High variation on yield and density of tree gaps was observed from the maps. It was also demonstrated overlapping regions of high density of plant absence and low fruit yield. Soil fertility varied depending on the sampling region in the orchard. The spatial variability found on yield, soil fertility and on disease occurrence demonstrated the importance to adopt site specific nutrient management and disease control as tools to guarantee efficiency of fruit production.
Resumo:
The construction and evaluation of an inexpensive flow photometer for clinical analysis, using a bicolour LED and a phototransistor adapted for tubular flow cell, are described. The instrument presents some new features such as: automatic zero, electronic calibration and peak-hold signal. When compared with a classical photometer, it is simpler and has the advantages of a flow analysis system: lower volumes of reagents and samples, lower levels of contamination, shorter time for analysis and lower analysis costs. The instrument was used in the determination of the constituents in blood samples. The results obtained agree with those obtained by a classical photometer and the precision was better.
Resumo:
An automatic dispenser based on a flow-injection system used to introduce sample and analytical solution into an inductively coupled plasma mass spectrometer through a spray chamber is proposed. Analytical curves were constructed after the injection of 20 to 750 µL aliquots of a multielement standard solution (20.0 µg L-1 in Li, Be, Al, V, Cr, Mn, Ni, Co, Cu, Zn, As, Se, Sr, Ag, Cd, Ba, Tl, Pb) and the acquisition of the integrated transient signals. The linear concentration range could be extended to ca. five decades. The performance of the system was checked by analyzing a NIST 1643d reference material. Accuracy could be improved by the proper selection of the injected volume. Besides good precision (r.s.d. < 2%), the results obtained with the proposed procedure were closer to the certified values of the reference material than those obtained by direct aspiration or by injecting 125 µL of several analytical solutions and samples.
Resumo:
One old dream of the chemist in the field of the drug research is to create molecules capable of reaching their target with the precision of a missile. To accomplish it these molecules must have the propriety of distinguishing qualitative differences between healthy and diseased cells. A therapy based on this principle, able of eradicating specifically defective cells, or cells affected by a pathogen has an enormous advantage with the regard to the classical approach in which the cytotoxic drugs merely exploit quantitative biochemical and kinetic differences between abnormal and normal cells. We present in this article a review on the chemical synthesis of analogues of desoxyribonucleotides and on results obtained on the specific and irreversible inhibition of undesired genetic expression using the antisense principle.
Resumo:
An automatic system for the direct determination of lead and tin by atomic absorption spectrometry is described. The on-line treatment of the metallic samples was obtained by anodic electrodissolution in a flow injection system. Lead was determined by flame atomic absorption spectrometry (FAAS) and tin by graphite furnace atomic absorption spectrometry (GFAAS). A computer program managed the current source and the solenoid valves that direct the fluids. Good linear correlations between absorbance and current intensity for lead and tin were observed. Results were in agreement with the certified values. Precision was always better than 5%. The recommended procedure allows the direct determination of 60 or 30 elements/h using FAAS or GFAAS, respectively.
Resumo:
Selectivity studies for the determination of Cr(VI) using the catalytic oxidation of the o-dianisidine by hydrogen peroxide showed two distincts situations. In the first, when interferents were studied by a univariate procedure, Cr(III) and Cu(II) cause serious interferences even at the 2:1 proportion, relative to Cr(VI), while Fe(III) interfered at the 15:1 ratio and EDTA at the 10:1 ratio. On the other hand, when a multivariate investigation was performed, Cr(III) did not present any significant principal effects and its significant interaction effects were negative, in contrast to EDTA, that presented positive interaction effects although, like Cr(III), did not show significant interaction effects. In view of the interferent's action it become necessary to separate Cr(VI) by extraction with methylisobutylketone in a chloridric acid medium before its determination in vegetals and in wastewater from a cellulose industry samples. Using this procedure, the method precision is ±0,5% at the 10 ng/mL Cr(VI) concentration level. The detection and quantification limits, calculated by means of absorbance measurements of ten replicates of blank reagents were 1,1 and 3,2 ng/mL, respectively. The results obtained with real samples showed a relative standard deviation between 1,2% and 3,0% relative to their reference values.
Resumo:
Solid-phase microextraction (SPME) has been applied to direct extraction of 11 organophosphorus pesticides in water using a 100 mm fiber polydimethylsiloxane. The method was evaluated with respect time of exposure, detection limits (LODs), linearity and precision. The detection limits (S/N = 3) depend of each pesticide and varie about ng/L levels. The linearity was satisfactory with coefficients of correlation usually greater than 0.993. The precision of the method was determined by extraction from 4.0 mg/L aqueous standard with coefficients of variation between 5.7 to 17.2%.
Resumo:
'Cachaça' is the Brazilian name for the spirit obtained from sugarcane. According to Brazilian regulations, it may be sold raw or with addition of sugar and may contain up to 5 mg/L of copper. Copper in "cachaça" was determined by titration with EDTA, using a homemade copper membrane electrode for end-point detection. It was found a pooled standard deviation of 0,057 mg/L and there was no significant difference between the results obtained by the potentiometric method and by flame atomic absorption spectrometry with standard addition. Among the 21 'cachaça' samples from 16 different brands analyzed, three overpassed the legal copper limit. For its characteristics of accuracy, precision, and speed, the potentiometric method may be employed advantageously in routine analysis, specially when low cost is a major concern.
Resumo:
The approaches are part of the everyday of the Physical Chemistry. In many didactic books in the area of Chemistry, the approaches are validated starting from qualitative and not quantitative approaches. We elaborated some examples that allow evaluating the quantitative impact of the approaches, being considered the mistake tolerated for the approximate calculation. The estimate of the error in the approaches should serve as guide to establish the validity of the calculation, which use them. Thus, the shortcut that represents a calculation approached to substitute accurate calculations; it can be used without it loses of quality in the results, besides indicating, as they are valid the adopted criterions.
Resumo:
Little is known about the amount of water and ash in brazilian foodstuffs and plants. The relationships between fresh, dry and ash weight were determined in 40 different biological samples. It could be an important tool when one studies biological material containing low concentration of the chemical elements. This study address to determine these relationships and to provide the amount of biological material that one needs to collect. It aims to supply information that could be used to improve the detection limit, precision and accuracy of the analytical methodology utilized.
Resumo:
A simple and low cost flow cell is proposed for measurements by solid-phase spectrophotometry employing a conventional spectrophotometer. The flow cell geometry allows the employment of a large amount of the solid support without causing both excessive attenuation of the radiation beam and increasing of the back-pressure. The adaptation of the flow cell in the optical path of the spectrophotometer in order to increase the precision is discussed. The flow cell characteristics were demonstrated by measurements of Co(II), employing 1-(2-tiazolylazo)-2-naphthol (TAN) immobilized on C18 bonded silica as solid support. The apparent molar absorptivity and coefficient of variation were estimated as 1.86 x 10(5) L mol-1 cm-1 and 1.4 % (n=15). A sample throughput of 40 determinations per hour and a detection limit of 15 mug L-1 (99.7 % confidence level) were achieved.