69 resultados para Molecular Reproduction, Development
Resumo:
The molecular basis of modern therapeutics consist in the modulation of cell function by the interaction of microbioactive molecules as drug cells macromolecules structures. Molecular modeling is a computational technique developed to access the chemical structure. This methodology, by means of the molecular similarity and complementary paradigm, is the basis for the computer-assisted drug design universally employed in pharmaceutical research laboratories to obtain more efficient, more selective, and safer drugs. In this work, we discuss some methods for molecular modeling and some approaches to evaluate new bioactive structures in development by our research group.
Resumo:
Trypanosoma cruzi is a protozoan parasite that causes a severe disease (Chagas'disease) in Central and South America. The currently available chemotherapeutic agents against this disease are still inadequate. The enzyme trypanothione reductase (TR) is considered a validated molecular target for the development of new drugs against this parasite. In this regard, a series of arylfurans based on 2,5-bis-(4-acetamidophenyl)furan was synthesized and tested for their in vitro inhibitory activity against TR. Molecular modeling studies of putative enzyme-inhibitor complexes revealed a possible mechanism of interaction. From synthesized compounds, a benzylaminofuran derivative was found to be more active than the lead compound.
Resumo:
In the present work, the development of a method based on the coupling of flow analysis (FA), hydride generation (HG), and derivative molecular absorption spectrophotometry (D-EAM) in gas phase (GP), is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm) of the absorption spectrum (190 - 300 nm) is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.
Resumo:
Molecularly imprinted polymers (MIPs) consist of synthetic macromolecular matrix, obtained through molecular imprinting-based methods that show ability to selectively recognize important biological molecules and its application in the drug delivery field is under development. In the present review the main aspects related to the synthesis and characterization of MIPs are studied. The fundamental variables participating in the synthesis process, such as template molecule, functional monomers, cross-linking agents, solvents and imprinting approaches are discussed. Moreover, the main available methods for MIPs chemical and morphological characterization are presented and the importance of the obtained information is discussed.
Resumo:
Microcystins are non-ribosomal peptides that must be detected for its health concern. Here, microcystin LR and its specific antibody were respectively tethered to the substrate and to the tip of an atomic force microscope, after surface functionalization using 3-aminopropyltriethoxysilane and glutaraldehyde. Functionalization was confirmed comparing topographic images taken on bare and modified tips. Force versus distance curves were successfully used to measure the specific antibody-antigen interactions comparing with a control in which microcystin was initially blocked by incubation with free antibodies. The results showed unequivocally the specific recognition of MLR, suggesting that this method could be useful for biosensor development.
Resumo:
Translatable and nontranslatable versions of the coat protein (cp) gene of a Papaya ringspot virus (PRSV) isolate collected in the state of Bahia, Brazil, were engineered for expression in Sunrise and Sunset Solo varieties of papaya (Carica papaya). The biolistic system was used to transform secondary somatic embryo cultures derived from immature zygotic embryos. Fifty-four transgenic lines, 26 translatable and 28 nontranslatable gene versions, were regenerated, with a transformation efficiency of 2.7%. Inoculation of cloned R0 plants with PRSV BR, PRSV HA or PRSV TH, Brazilian, Hawaiian and Thai isolates, respectively, revealed lines with mono-, double-, and triple-resistance. After molecular analysis and a preliminary agronomic evaluation, 13 R1 and R2 populations were incorporated into the papaya-breeding program at Embrapa Cassava and Tropical Fruits, in Cruz das Almas, Bahia, Brazil.
Resumo:
This overview examines some selected genetic mechanisms of cancer development. Strong evidence has been accumulated suggesting that alteration in either the struture or activity of proto-oncogene contributes to the development and for the maintenance of the malignant phenotype. Many factors are known to interfere with both normal and pathological controls of growth and differentiation of thyroid cells. Among them, some are oncogenes, like those encoding g-proteins (ras, gsp, TSH-R), encoding thyrosino kinases receptors (RET, trk, c-met, c-erb, BRAF) and encoding nuclear proteins (c-myc, e-fós). Others are anti-oncogenes (p53, p15, RB), by loss of the growth suppression ativity of the suppressive gene. Cancer cell invasion and metastasis are the major causes of morbidity and mortality in cancer patients. Many genes are involved in the mechanism of invasion and metastasis of thyroid tumors, like Nis, b-catenina, E-caderina, galectina-3, GLUT, telomerase, VEGT, nm-23. All these oncogenes, antioncogenes and tumor invasion and metastasis-related genes are analysed. Several clinical and prognostic factors have been proposed to identify patients at risk for the development of metastasis and death. The role of molecular genetics in this issue is discussed. However, other studies are needed to validate molecular alterations as an independent prognostic factor in thyroid cancer.
Resumo:
Kinosternon scorpioides (Linnaeus, 1766), with its common name of jurará, is a quite variable species of turtles, and many different names have been applied to populations throughout its range. Currently, however, four subspecies are considered valid as K. scorpioides arises from southern Panama over most of northern South America and is found in Ecuador, northern Peru, southern Bolivia, northern Argentina, eastern Guyana and Brazil. Thus, an ultrasonographic and radiographic study was performed in order to describe the morphology and development of eggs of 20 female jurará mud turtles K. scorpioides, from September 2005 to August 2006. In the first month, the ovarian cycle was characterized by absence of vitellogenic follicles, atresic follicles or oviduct eggs. From October 2005 to March 2006 on, ultrasonographic scanning allowed to establish the growing vitellogenic follicles. Vitellogenic follicles were observed with spherical to ovoid shapes, with a surrounding echogenic yolk, a nonechogenic albumin layer, and a high echogenic shell. The oviduct eggs were identified by radiography just 180 days after beginning the experiment, when the shell became enough mineralized to impress the radiographic film. This experiment allowed to obtain by means of the 7.5 MHz linear probe images with adequate resolution and penetration for visualization of follicles. Successive ultrasonographic examinations of 20 K. scorpioides females allowed to access initial stages of vitellogenic follicles and oviduct eggs, and radiographic examination revealed to be an easy technique to assess oviduct eggs and to allow evaluation of egg development in jurarás, from 6 months on.
Resumo:
Pythium insidiosum is an oomycete belonging to the kingdom Stramenipila and it is the etiologic agent of pythiosis. Pythiosis is a life-threatening infectious disease characterized by the development of chronic lesions on cutaneous and subcutaneous, intestinal, and bone tissues in humans and many species of animals. The identification of P. insidiosum is important in order to implement a rapid and definitive diagnosis and an effective treatment. This study reports the identification of 54 isolates of P. insidiosum of horses, dogs and sheep that presented suspicious clinical lesions of pythiosis from different regions in Brazil, by using morphological and molecular assays. Throughout the PCR it was possible to confirm the identity of all Brazilian isolates as being P. insidiosum.
Resumo:
Regnellidium diphyllum has its distribution restricted to Southern Brazil and adjoining localities in Uruguay and Argentina. Currently it is on the list of threatened species of Rio Grande do Sul. The conversion of wetlands into agricultural areas or soil contamination by the introduction of waste products and fertilizers may compromise the establishment and survival of this species. Among the pollutants are heavy metals, such as cadmium (Cd). Megaspores were germinated in liquid culture medium, with concentrations 0 (control), 0.39; 0.78; 1.56; 3.12; 6.25; 12.5; 25; 50 and 100 mg L-1 of Cd, starting from a standard solution of Titrisol® at 1000 mg L-1. The increase of Cd in the growth medium to 50 mg L-1 resulted in low germinability (58%), and no germination was observed on 100 mg L-1. In apomictical sporophytes, the growth of primary root and leaf was significantly reduced and no secondary leaf was formed at Cd concentrations of 12.5 and higher than this. The results indicated that R. diphyllum is tolerant to the presence of Cd up to considerably higher concentrations (0.78 mg L-1) than that normally found in unpolluted aquatic ecosystems (0.01 mg L-1), although the sensitivity to higher concentrations might endanger the establishment and permanence of this species in habitats exposed to contamination with this metal.
Resumo:
The participation of the kallikrein-kinin system, comprising the serine proteases kallikreins, the protein substrates kininogens and the effective peptides kinins, in some pathological processes like hypertension and cardiovascular diseases is still a matter of controversy. The use of different experimental set-ups in concert with the development of potent and specific inhibitors and antagonists for the system has highlighted its importance but the results still lack conclusivity. Over the last few years, transgenic and gene-targeting technologies associated with molecular biology tools have provided specific information about the elusive role of the kallikrein-kinin system in the control of blood pressure and electrolyte homeostasis. cDNA and genomic sequences for kinin receptors B2 and B1 from different species were isolated and shown to encode G-protein-coupled receptors and the structure and pharmacology of the receptors were characterized. Transgenic animals expressing an overactive kallikrein-kinin system were established to study the cardiovascular effects of these alterations and the results of these investigations further corroborate the importance of this system in the maintenance of normal blood pressure. Knockout animals for B2 and B1 receptors are available and their analysis also points to the role of these receptors in cardiovascular regulation and inflammatory processes. In this paper the most recent and relevant genetic animal models developed for the study of the kallikrein-kinin system are reviewed, and the advances they brought to the understanding of the biological role of this system are discussed.
Resumo:
The control of CD4 gene expression is essential for proper T lymphocyte development. Signals transmitted from the T-cell antigen receptor (TCR) during the thymic selection processes are believed to be linked to the regulation of CD4 gene expression during specific stages of T cell development. Thus, a study of the factors that control CD4 gene expression may lead to further insight into the molecular mechanisms that drive thymic selection. In this review, we discuss the work conducted to date to identify and characterize the cis-acting transcriptional control elements in the CD4 locus and the DNA-binding factors that mediate their function. From these studies, it is becoming clear that the molecular mechanisms controlling CD4 gene expression are very complex and differ at each stage of development. Thus, the control of CD4 expression is subject to many different influences as the thymocyte develops.
Resumo:
The anticlotting and antithrombotic activities of heparin, heparan sulfate, low molecular weight heparins, heparin and heparin-like compounds from various sources used in clinical practice or under development are briefly reviewed. Heparin isolated from shrimp mimics the pharmacological activities of low molecular weight heparins. A heparan sulfate from Artemia franciscana and a dermatan sulfate from tuna fish show a potent heparin cofactor II activity. A heparan sulfate derived from bovine pancreas has a potent antithrombotic activity in an arterial and venous thrombosis model with a negligible activity upon the serine proteases of the coagulation cascade. It is suggested that the antithrombotic activity of heparin and other antithrombotic agents is due at least in part to their action on endothelial cells stimulating the synthesis of an antithrombotic heparan sulfate.
Resumo:
In this paper, the topology of cortical visuotopic maps in adult primates is reviewed, with emphasis on recent studies. The observed visuotopic organisation can be summarised with reference to two basic rules. First, adjacent radial columns in the cortex represent partially overlapping regions of the visual field, irrespective of whether these columns are part of the same or different cortical areas. This primary rule is seldom, if ever, violated. Second, adjacent regions of the visual field tend to be represented in adjacent radial columns of a same area. This rule is not as rigid as the first, as many cortical areas form discontinuous, second-order representations of the visual field. A developmental model based on these physiological observations, and on comparative studies of cortical organisation, is then proposed, in order to explain how a combination of molecular specification steps and activity-driven processes can generate the variety of visuotopic organisations observed in adult cortex.
Resumo:
Several genes that influence the development and function of the hypothalamic-pituitary-gonadal-axis (HPG) have been identified. These genes encode an array of transcription factors, matrix proteins, hormones, receptors, and enzymes that are expressed at multiple levels of the HPG. We report the experience of a single Endocrinology Unit in the identification and characterization of naturally occurring mutations in families affected by HPG disorders, including forms of precocious puberty, hypogonadism and abnormal sexual development due to impaired gonadotropin function. Eight distinct genes implicated in HPG function were studied: KAL, SF1, DAX1, GnRH, GnRHR, FSHß, FSHR, and LHR. Most mutations identified in our cohort are described for the first time in literature. New mutations in SF1, DAX1 and GnRHR genes were identified in three Brazilian patients with hypogonadism. Eight boys with luteinizing hormone- (LH) independent precocious puberty due to testotoxicosis were studied, and all have their LH receptor (LHR) defects elucidated. Among the identified LHR molecular defects, three were new activating mutations. In addition, these mutations were frequently associated with new clinical and hormonal aspects, contributing significantly to the knowledge of the molecular basis of reproductive disorders. In conclusion, the naturally occurring genetic mutations described in the Brazilian families studied provide important insights into the regulation of the HPG.