76 resultados para S-phenyl-mercapturic acid determination
Resumo:
The polyphenol contents and antioxidant capacity of Brazilian red grape juices and wine vinegars were analyzed. Additionally, it was analyzed the human polyphenol absorption and acute effect in plasmatic oxidative metabolism biomarkers after juice ingestion. The organic Bordo grape juice (GBO) presented a higher level of trans-resveratrol, quercitin, rutin, gallic acid, caffeic acid and total flavonoids then other juices and vinegars as well as antioxidant capacity. The plasmatic polyphenol increased 27.2% after GBO juice ingestion. The results showed that juices and vinegars from Brazilian crops present similar chemical and functional properties described in studies performed in other countries.
Resumo:
The purpose of the present study was to validate a method for organic Hg determination in sediment. The procedure for organic Hg was adapted from literature, where the organomercurial compounds were extracted with dichloromethane in acid medium and subsequent destruction of organic compounds by bromine chloride. Total Hg was performed according to 3051A USEPA methodology. Mercury quantification for both methodologies was then performed by CVAAS. Methodology validation was verified by analyzing certified reference materials for total Hg and methylmercury. The uncertainties for both methodologies were calculated. The quantification limit of 3.3 µg kg-1 was found for organic Hg by CVAAS.
Resumo:
A UV-spectrophotometric method is described for the determination of lansoprazole (LAN). The method is based on the measurement of the absorbance of LAN solution in acetonitrile at 281 nm. The system obeyed Beer's law over the concentration range of 1.25-25.0 µg/mL. The degradation behavior of LAN was investigated under dry heat treatment, UV-degradation, acid hydrolysis, alkali hydrolysis and oxidation; and found to degrade extensively under acid hydrolysis, alkali hydrolysis and oxidation. The method was applied to the determination of LAN in capsule and the results were statistically compared with those of the reference method by applying Student's t-test and F-test.
Resumo:
A selective and accurate stability-indicating gradient reverse phase ultra performance liquid chromatographic method has been developed and validated for the simultaneous determination of nizatidine, methylparaben and propylparaben in pharmaceutical oral liquid formulation. The separation was achieved on Acquity UPLC TM HSS T3 1.8 µm column by using mobile phase containing a gradient mixture of solvent A (0.02 Mol L-1 KH2PO4, pH 7.5) and B (60:40 v/v mixture of methanol and acetonitrile) at flow rate of 0.4 mL min-1. Drug product was exposed to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The developed method was validated as per international ICH guidelines with respect to specificity, linearity, accuracy, precision and robustness.
Resumo:
A rapid and sensitive method using high performance liquid chromatography has been developed and validated for the simultaneous determination of non-steroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical formulations and human serum. Six NSAIDs including: naproxen sodium, diclofenac sodium, meloxicam, flurbiprofen, tiaprofenic and mefenamic acid were analyzed simultaneously in presence of ibuprofen as internal standard on Mediterranea C18 (5 µm, 250 x 0.46 mm) column. Mobile phase comprised of methanol: acetonitrile: H2O (60:20:20, v/v; pH 3.35) and pumped at a flow rate of 1 mL min-1 using 265 nm UV detection. The method was linear over a concentration range of 0.25-50 µg mL-1 (r² = 0.9999).
Resumo:
A method using HPLC-UV was developed and validated for the determination of etoposide incorporated into polycaprolactone implants. The method was carried out in isocratic mode using a C18 column (250 x 4.6 mm; 5 µm), at 25 ºC, with acetonitrile and acetic acid 4% (70:30) as mobile phase, a flow rate of 2 mL/min, and UV detection at 285 nm. The method was linear (r² > 0.99) over the range of 5 to 65 µg/mL, precise (RSD < 5%), accurate (recovery of 98.7%), robust, selective regarding excipient of the sample, and had a quantitation limit equal to 1.76 µg/mL. The validated method can be successfully employed for routine quality control analyses.
Resumo:
Hydrogels have been prepared by free-radical solution copolymerization of acrylamide and sodium acrylate (NaAc), with molar ratio ranging from 25/75 to 80/20, respectively, using methylene bisacrylamide as the crosslinking agent. A FTIR spectroscopy procedure to determine the acrylate/acrylamide ratio in these hydrogels was proposed based on absorbance at 1410 cm-1 (nCOO-) and 2940 cm-1 (nCH and nCH2). A straight line with a good linear correlation coefficient (0.998) was obtained by plotting the acrylate content (Ac%) versus relative absorbance (Arel = A1410/A2940). Results were confirmed by the amount of sodium cation released in acid medium determined by atomic absorption spectrometry.
Resumo:
A simultaneous solid phase extraction procedure for enrichment of Cu(II), Cd(II) and Mn(II) has been developed. The method is based on adsorption of Cu(II), Cd(II) and Mn(II) ions on polyethylene glycol-silica gel pre-conditioned with acetate buffer (pH 5.5). The adsorbed metal ions are eluted with nitric acid (1 mol L -1) and determined by flame atomic absorption spectrometry. The calibration graph was linear in the range of 2-140 ng mL-1 for Cu(II), 1-40 ng mL-1 for Cd(II) and 4-100 ng mL-1 for Mn(II). The limits of detection were 0.66, 0.33 and 1.20 ng mL-1 for Cu(II), Cd(II) and Mn(II), respectively.
Resumo:
A sensitive, accurate and simple method using HPLC-MS/MS was developed and validated for levodopa quantitation in human plasma. Analysis was achieved on a pursuit® C18 analytical column (5 µm; 150 x 4.6 mm i.d.) using a mobile phase (methanol and water , 90:10, v/v) containing formic acid 0.5% v/v, after extracting the samples using a simple protein plasma precipitation with perchloric acid. The developed method was validated in accordance with ANVISA guidelines and was successfully applied to a bioequivalence study in 60 healthy volunteers demonstrating the feasibility and reliability of the proposed method.
Resumo:
In the present study, a reversed-phase high-performance liquid chromatographic (RP-HPLC) procedure was developed and validated for the simultaneous determination of seven water-soluble vitamins (thiamine, riboflavin, niacin, cyanocobalamin, ascorbic acid, folic acid, and p-aminobenzoic acid) and four fat-soluble vitamins (retinol acetate, cholecalciferol, α-tocopherol, and phytonadione) in multivitamin tablets. The linearity of the method was excellent (R² > 0.999) over the concentration range of 10 - 500 ng mL-1. The statistical evaluation of the method was carried out by performing the intra- and inter-day precision. The accuracy of the method was tested by measuring the average recovery; values ranged between 87.4% and 98.5% and were acceptable quantitative results that corresponded with the label claims.
Resumo:
This work focused on the development and validation of an RP-HPLC-UV method for quantification of beta-lactam antibiotics in three pharmaceutical samples. Active principles analyzed were amoxicillin and ampicillin, in 3 veterinary drugs. Mobile phase comprised 5 mmol L-1 phosphoric acid solution at pH 2.00, acetonitrile with gradient elution mode and detection wavelength at 220 nm. The method was validated according to the Brazilian National Health Surveillance regulation, where linear range and linearity, selectivity, precision, accuracy and ruggedness were evaluated. Inter day precision and accuracy for pharmaceutical samples 1, 2 and 3 were: 1.43 and 1.43%; 4.71 and 3.74%; 2.72 and 1.72%, respectively, while regression coefficients for analytical curves exceeded 0.99. The method had acceptable merit figure values, indicating reliable quantification. Analyzed samples had active principle concentrations varying from -12 to +21% compared to manufacturer label claims, rendering the medicine unsafe for administration to animals.
Resumo:
A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS)-coated γ-alumina modified with bis(2-hydroxy acetophenone)-1,6-hexanediimine (BHAH) ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS). The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.
Resumo:
A potentiometric Nickel sensor was prepared using 2-hydroxy-1-naphthylidene-N-cyanoacetohydrazone as electro-active material and epoxy resin as a binding material. A membrane composed of 40% Schiff's base and 60% epoxy resin exhibited the best performance. The membrane showed excellent response in the concentration range of 0.15 ppm to 0.1 mol L- 1 Ni+2 ions with non-Nernstian slope of 22.0 mV/decade, had a rapid response time (less than 10 s), and can be used for three months without any considerable loss of potential. The sensor was useful within the pH range of 1.3 to 9.6, and was able to discriminate between Ni2+ and a large number of alkaline earth and transition metal ions. The practical utility of the sensor has been demonstrated by using it successfully as an indicator electrode in the potentiometric titration of Ni2+ with EDTA and oxalic acid.
Resumo:
Among other applications, Ipomoea pes-caprae is popularly used to treat jellyfish stings, supporting the development of a product for dermatological use. Hydroethanolic spray-dried extract was chosen for the further development of phytomedicines, and a stability-indicative HPLC-UV method was developed and validated for the determination of isoquercitrin and isochlorogenic acids A, B and C. The method was developed using a C18 column (250 x 4.6 mm, 5 µm) with an acetonitrile:water mobile phase at pH 3.0 in a gradient run. The four constituents and other unidentified components of the extract were appropriately resolved without interference of degradation products after stress tests (acid, alkali, neutral, oxidant, photolysis). The method showed linearity in the isoquercitrin concentration range from 5.0-50.0 µg mL-1, with adequate precision (RSD% < 2.5% for the intra- and inter-day studies), accuracy (recovery of 100.0 ± 2.0%), and robustness. Both the herbal drug and spray-dried extract of I. pes-caprae were subjected to stability studies in accelerated and long-term conditions over four months. The samples maintained their characteristics and marker contents (< 10% of variation).
Resumo:
A simple procedure is described for the determination of scopolamine by square-wave voltammetry using a cathodically pretreated boron-doped diamond electrode. Cyclic voltammetry studies indicate that the oxidation of scopolamine is irreversible at a peak potential of 1.59 V (vs. Ag/AgCl (3.0 mol L-1 KCl)) in a 0.50 mol L-1 sulfuric acid solution. Under optimized conditions, the analytical curve obtained was linear (r = 0.9996) for the scopolamine concentration range of 1.0 to 110 µmol L-1, with a detection limit of 0.84 µmol L-1. The method was successfully applied to the determination of scopolamine in pharmaceutical formulations with minimum sample preparation.