142 resultados para Spectrophotometry, Atomic Absorption
Resumo:
A flow-injection system with sample and reagent addition by the synchronous merging zones approach for calcium determination in milk by flame AAS is proposed. Main parameters were optimized using a factorial design with central point. The optimum conditions were 2.5% (m/v) for La concentration, 8 mL min-1 for the carrier flow-rate, 20 cm for coiled reactor and 250 ìL for sample volume. Different sample preparation procedures were evaluated such as dilution in water or acid and microwave-assisted decomposition using concentrated or diluted acids. The optimized flow system was applied to determine Ca in eleven commercial milk samples and two standard reference materials diluted in water. Similar calcium levels were encountered comparing the results obtained by the proposed method (dilution in water) with those obtained using microwave-oven digestion. Results obtained in two standard reference materials were in agreement at 95% confidence level with those certified. Recoveries of spiked samples were in the 93% - 116% range. Relative standard deviation (n = 12) was < 5.4% and the sample throughput was 150 measurements per hour, corresponding to a consumption of 250 µL of sample and 6.25 mg La per determination.
Resumo:
A procedure for separation and preconcentration of trace amounts of Zn(II) from aqueous media is proposed. The procedure is based on the adsorption of Zn2+ on octadecyl bonded silica membrane disk modified with N,N'-disalicylidene-1,2-phenylendiamine at pH 7. The retained zinc ions were then stripped from the disk with a minimal amount of 1.5 mol L-1 hydrochloric acid solution as eluent, and determined by flame atomic absorption spectrometry. Maximum capacity of the membrane disk modified with 5 mg of the ligand was found to be 226 µg Zn2+. The relative standard deviation of zinc for ten replicate extraction of 10 µg zinc from 1000 mL samples was 1.2%. The limit of detection of the proposed method was 14 ng of Zn2+ per 1000 mL. The method was successfully applied to the determination of zinc in natural water samples and accuracy was examined by recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry (GFAAS).
Resumo:
In this work, a new mathematical equation correction approach for overcoming spectral and transport interferences was proposed. The proposal was applied to eliminate spectral interference caused by PO molecules at the 217.0005 nm Pb line, and the transport interference caused by variations in phosphoric acid concentrations. Correction may be necessary at 217.0005 nm to account for the contribution of PO, since Atotal217.0005 nm = A Pb217.0005 nm + A PO217.0005 nm. This may be easily done by measuring other PO wavelengths (e.g. 217.0458 nm) and calculating the relative contribution of PO absorbance (A PO) to the total absorbance (Atotal) at 217.0005 nm: A Pb217.0005 nm = Atotal217.0005 nm - A PO217.0005 nm = Atotal217.0005 nm - k (A PO217.0458 nm). The correction factor k is calculated from slopes of calibration curves built up for phosphorous (P) standard solutions measured at 217.0005 and 217.0458 nm, i.e. k = (slope217.0005 nm/slope217.0458 nm). For wavelength integrated absorbance of 3 pixels, sample aspiration rate of 5.0 ml min-1, analytical curves in the 0.1 - 1.0 mg L-1 Pb range with linearity better than 0.9990 were consistently obtained. Calibration curves for P at 217.0005 and 217.0458 nm with linearity better than 0.998 were obtained. Relative standard deviations (RSD) of measurements (n = 12) in the range of 1.4 - 4.3% and 2.0 - 6.0% without and with mathematical equation correction approach were obtained respectively. The limit of detection calculated to analytical line at 217.0005 nm was 10 µg L-1 Pb. Recoveries for Pb spikes were in the 97.5 - 100% and 105 - 230% intervals with and without mathematical equation correction approach, respectively.
Resumo:
This work describes a method to determine Cu at wide range concentrations in a single run without need of further dilutions employing high-resolution continuum source flame atomic absorption spectrometry. Different atomic lines for Cu at 324.754 nm, 327.396 nm, 222.570 nm, 249.215 nm and 224.426 nm were evaluated and main figures of merit established. Absorbance measurements at 324.754 nm, 249.215 nm and 224.426 nm allows the determination of Cu in the 0.07 - 5.0 mg L-1, 5.0 - 100 mg L-1 and 100 - 800 mg L-1 concentration intervals respectively with linear correlation coefficients better than 0.998. Limits of detection were 21 µg L-1, 310 µg L-1 and 1400 µg L-1 for 324.754 nm, 249.215 nm and 224.426 nm, respectively and relative standard deviations (n = 12) were £ 2.7%. The proposed method was applied to water samples spiked with Cu and the results were in agreement at a 95% of confidence level (paired t-test) with those obtained by line-source flame atomic absorption spectrometry.
Resumo:
The Graphite furnace atomic absorption spectrometry (GF AAS) was the technique chosen by the inorganic contamination laboratory (INCQ/ FIOCRUZ) to be validated and applied in routine analysis for arsenic detection and quantification. The selectivity, linearity, sensibility, detection, and quantification limits besides accuracy and precision parameters were studied and optimized under Stabilized Temperature Platform Furnace (STPF) conditions. The limit of detection obtained was 0.13 µg.L-1 and the limit of quantification was 1.04 µg.L-1, with an average precision, for total arsenic, less than 15% and an accuracy of 96%. To quantify the chemical species As(III) and As(V), an ion-exchange resin (Dowex 1X8, Cl- form) was used and the physical-chemical parameters were optimized resulting in a recuperation of 98% of As(III) and of 90% of As(V). The method was applied to groundwater, mineral water, and hemodialysis purified water samples. All results obtained were lower than the maximum limit values established by the legal Brazilian regulations, in effect, 50, 10, and 5 µg.L-1 para As total, As(III) e As(V), respectively. All results were statistically evaluated.
Resumo:
In the present work, the development of a method based on the coupling of flow analysis (FA), hydride generation (HG), and derivative molecular absorption spectrophotometry (D-EAM) in gas phase (GP), is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm) of the absorption spectrum (190 - 300 nm) is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.
Resumo:
OBJECTIVE: To assess the relationship of blood lead and hemoglobin, zinc protoporphyrin, and ferritin concentrations in children. METHODS: A cross-sectional study was carried out in 136 anemic and non-anemic children from two rural villages near a lead smelter in Adrianópolis, Southern Brazil, from July to September 2001. Hemoglobin electrophoresis was performed to exclude children with hemoglobin variants and thalassemia syndromes associated with anemia. Lead was determined by atomic absorption spectrophotometry; hemoglobin by automated cell counting; zinc protoporphyrin by hematofluorometry; ferritin by chemiluminescence. Student's t-test, Mann-Whitney test, and the c² test were used to assess the significance of the differences between the variables investigated in anemic and non-anemic children. Stepwise multivariate linear regression analysis was performed using two models for anemic and non-anemic children respectively. RESULTS: Lead was negatively associated to hemoglobin (p<0.017) in the first model, and in the second model lead was positively associated to zinc protoporphyrin (p<0.004) after controlling for ferritin, age, sex, and per capita income. There was an inverse association between hemoglobin and blood lead in anemic children. It was not possible to confirm if anemic children had iron deficiency anemia or subclinical infection, considering that the majority (90.4%) had normal ferritin. CONCLUSIONS: The study detected a relationship between anemia and elevated blood lead concentrations. Further epidemiological studies are necessary to investigate the impact of iron nutritional interventions as an attempt to decrease blood lead in children.
Resumo:
Introduction We hypothesized that nutritional deficiency would be common in a cohort of postpartum, human immunodeficiency virus (HIV)-infected women and their infants. Methods Weight and height, as well as blood concentrations of retinol, α-tocopherol, ferritin, hemoglobin, and zinc, were measured in mothers after delivery and in their infants at birth and at 6-12 weeks and six months of age. Retinol and α-tocopherol levels were quantified by high performance liquid chromatography, and zinc levels were measured by atomic absorption spectrophotometry. The maternal body mass index during pregnancy was adjusted for gestational age (adjBMI). Results Among the 97 women 19.6% were underweight. Laboratory abnormalities were most frequently observed for the hemoglobin (46.4%), zinc (41.1%), retinol (12.5%) and ferritin (6.5%) levels. Five percent of the women had mean corpuscular hemoglobin concentrations < 31g/dL. The most common deficiency in the infants was α-tocopherol (81%) at birth; however, only 18.5% of infants had deficient levels at six months of age. Large percentages of infants had zinc (36.8%) and retinol (29.5%) deficiencies at birth; however, these percentages decreased to 17.5% and 18.5%, respectively, by six months of age. No associations between infant micronutrient deficiencies and either the maternal adjBMI category or maternal micronutrient deficiencies were found. Conclusions Micronutrient deficiencies were common in HIV-infected women and their infants. Micronutrient deficiencies were less prevalent in the infants at six months of age. Neither underweight women nor their infants at birth were at increased risk for micronutrient deficiencies.
Resumo:
We evaluated in this study the total mercury concentration in feathers of Ardea albus collected in a colony located in the city of Belem-PA, Brazil in a prospective trial for its use as bioindicators of mercury burden in Amazonia ecosystems. An Atomic absorption spectrophotometry with gold amalgamation was used for the metal determination. The total mercury average concentration in body feathers was 2.2 ± 1.5 µg.g-1 and 1.3 ± 0.9 µg.g-1 in wing feathers. No correlation was observed between total mercury concentration and the length of body or wing feathers. Total mercury concentration was above 5 µg.g-1 dry weight in only one body feather sample.
Resumo:
OBJECTIVE: To analyze the association of thiamin, selenium, and copper serum levels with cardiac function in patients with idiopathic dilated cardiomyopathy using diuretics, and also to compare them with levels in control patients with no evidence of disease. METHODS: The study comprised 30 patients with heart disease and 30 healthy control individuals. Thiamin was analyzed by measuring the activity of erythrocytic transketolase and the effect of thiamin pyrophosphate. Selenium and copper serum levels were measured by hydride generation and flame atomic absorption spectrophotometry, respectively. RESULTS: Thiamin deficiency was observed in 10% of the control individuals and in 33% of the patients with heart disease (p=0.02). The mean selenium and copper serum levels in control individuals and patients with heart disease were, respectively, 73.2±9.9 µg/L (56.5 to 94.5 µg/L) and 72.3±14.3 µg/L (35.5 to 94 µg/L) (p=0.77); 1.1±0.4mg/L (0.6 to 1.8mg/L) and 1.2± 0.4mg/L (0.6 to 2.2mg/L) (p=0.27). No association between the levels of these nutrients and cardiac function was observed. CONCLUSION: Thiamin deficiency was significantly more frequent in patients with heart disease. No significant difference was observed between the mean selenium and copper serum levels in control individuals and in patients with heart disease. The results suggest possible benefits with thiamin replacement in patients taking diuretics.
Resumo:
The amounts of macro (P, K, Ca and Mg) and micronutrients (Cu and Zn) extracted with the Mehlich-1 (M1) solution, by the 1.0 mol L-1 KCl (KCl) and with the 0.1 mol L-1 HCl (HCl) for representative soil types of the Rio Grande do Sul state (Brazil) were compared with those extracted with the Mehlich-1 solution determined with the inductively coupled plasma optical emission spectroscopy (ICP). The amounts of nutrients extracted by the different methods showed high correlation coefficients. On average, the Mehlich-1 solution extracted similar amounts of P, determined with colorimetric and ICP methods, and, K determined with emission and ICP. The amounts of Ca and Mg extracted with the Mehlich-1 solution, determined by ICP, were similar to those extracted with the KCl solution determined by the atomic absorption spectrophotometry. The amounts of Cu and Zn extracted with the Mehlich-1 solution, determined by the ICP, were higher than those extracted with the 0.1 mol L-1 HCl determined by the atomic absorption spectrophotometry. The results indicate that the Mehlich-1 solution and ICP can be used for simultaneous multielement extraction and determination for Southern Brazilian soils. However, a conversion factor for values interpretation is needed. The use of the conversion factor to determine the K availability index in soils is adequate and does not affect the K recommendations for crops in southern Brazilian soils.
Resumo:
The interface and software for synchronous control of an autosampler and an electrothermal tungsten coil atomizer in atomic absorption spectrophotometry were developed. The control of the power supply, the trigger of the Read function of the spectrophotometer and the automatic operation of the autosampler was performed by software written in "TurboBasic". The system was evaluated by comparison of the repeatability of peak-height absorbances obtained in the atomization of lead by consecutive 10-µl injections of solutions (prepared in 0.2% v/v HNO3) using autosampler and manual sample introduction, and also by long term operation.
Resumo:
In order to evaluate the chromium contamination from tannery discharges into rivers in the State of Minas Gerais, samples of water and suspended material were collected and submitted to chemical analysis. The total content of chromium in the samples was measured by flame atomic absorption spectrophotometry. Water samples were analysed by standard addition method, while chromium concentration in suspended materials was determined by calibration curves. Localities investigated were Ipatinga, Matias Barbosa, Dores de Campo, Ressaquinha, Ubá and Juiz de Fora. Samples from a not-industrialized area were also analysed to obtain regional background values. Metal inputs were related to effluent discharges into the rivers. Suspended material transported Cr downriver. Chromium concentration in river water exceeded 656 times the value of the Brazilian Environmental Standards, while its concentration in suspended material ranged from 15 to 11066 µg g-1.
Resumo:
In the present work four different analytical methodologies were studied for the determination of iron and titanium in Portland cement. The cement samples were dissolved with hot HCl and HF, being compared Fe and Ti concentrations through four analytical methods: molecular absorption spectrophotometry using the reagents 1,2-hydroxybenzene-3,5-disulfonic acid (Tiron) and the 5-chloro-salicylic acid (CSA), inductively coupled plasma atomic emission spectrometry (ICP-AES) and flame atomic absorption spectrophotometry (FAAS). In the spectrophotometric determinations were studied pH conditions, reagents addition order, interferences, amount of reagents, linear range and stability of the system. In the techniques of ICP-AES and FAAS were studied the best lines, interferences, sensibility and linear range. The obtained results were compared and the agreement was evaluated among the methods for the determination of the metals of interest.
Resumo:
Calculation of uncertainty of results represents the new paradigm in the area of the quality of measurements in laboratories. The guidance on the Expression of Uncertainty in Measurement of the ISO / International Organization for Standardization assumes that the analyst is being asked to give a parameter that characterizes the range of the values that could reasonably be associated with the result of the measurement. In practice, the uncertainty of the analytical result may arise from many possible sources: sampling, sample preparation, matrix effects, equipments, standards and reference materials, among others. This paper suggests a procedure for calculation of uncertainties components of an analytical result due to sample preparation (uncertainty of weights and volumetric equipment) and instrument analytical signal (calibration uncertainty). A numerical example is carefully explained based on measurements obtained for cadmium determination by flame atomic absorption spectrophotometry. Results obtained for components of total uncertainty showed that the main contribution to the analytical result was the calibration procedure.