46 resultados para Postschool Transitions
Resumo:
We consider the relevance of the study of the glassy state properties and the glass transition as important topics of the physical chemistry for undergraduate courses of Chemistry. Two of the most important theoretical approaches for the description of the glassy state, the thermodynamic and the kinetic models, are summarized with emphasis on the physical chemistry aspects. Examples illustrating the glass transition of some materials are also presented.
Resumo:
We report the synthesis and study of a new series of oxovanadium (IV) dithiocarbamate adducts and derivatives with pyridine and cyclohexyl, di-iso-butyl, di-n-propyl, anilin, morpholin, piperidin and di-iso-propyl amines. The complexes have been characterized by analytical, magnetochemical, IR, visible-UV spectral and thermal studies, and are assigned the formulas [VO(L)2].py, where L=cyclohexyl, di-iso-butyl, di-n-propyl, anilin dithiocarbamate and [VO(OH)(L)(py)2]OH.H2O (L=morpholin, piperidin and di-iso-propyl dithiocarbamate). The effect of the adduct formation on the pV=0 bound is discussed in terms of the IR (V=O, V-S and V-N stretching frequencies) and electronic spectra (d-d transitions).
Resumo:
The present experiment describes the preparation, characterization of n-butyl(pyridil)cobaloxime complex and its electrochemical property. The infrared and uv-visible absorption spectra were used to characterize the complex obtained. The infrared spectrum of the compound showed characteristics bands that indicated the formation of the Co-C chemical bond formation. The electronic absorption spectrum in acetonitrile showed transition bands attributed to p-p*, metal-to-ligand charge transfer, d-d transitions and charge transfer Co-C. The electrochemical property was investigated by the pulse differential voltammetry technique. Two oxidation processes: Co(I)/Co(II) at -423 mV and Co(II)/Co(III) at 752 mV were observed.
Resumo:
Three mixtures of triterpenes (maniladiol and breine; alpha and beta-amyrin; lupenone, alpha and beta-amyrinone) were isolated from Protium heptaphyllum March resin. The structural identification was based on NMR and mass spectrometry data. Lupenone, and alpha and beta-amyrinone were not reported before as constituents of this resin. The resin was submitted to methylation and acetylation reactions. The pure and derivatized resins and the mixtures (maniladiol and breine; alpha and beta-amyrin) were analyzed by TG and DSC. The TG curves revealed that the derivatization decreases the thermal stability of the resin. The DSC curves showed peaks that can be assigned to evaporation and phase transitions processes.
Resumo:
In this work, we report the synthesis and the photoluminescence features of Eu(III)-doped yttrium-aluminium oxide obtained by non-hydrolytic sol-gel routes. After heating the powders above 600 ºC the XRD patterns show the presence of the Y4Al2O9 (YAM) and Y3Al5O12 (YAG) phases. At 800 and at 1500 ºC the PL spectra display the Eu(III) lines characteristic of the YAM monoclinic phase. The 5D0->7F2 transition is favored relatively to the 5D0->7F1 lines. However, at 1100 ºC the cubic YAG is the preferential phase and the 5D0->7F1 transition dominates the spectrum. The Eu(III) ions lie in a centrosymmetrical site. The different solvents used in the sol-gel synthesis also change the relative proportion between these two phases. This is monitored analyzing the modifications in the relative intensity between the 5D0->7F2 and the 5D0->7F1 transitions.
Resumo:
Inexistent colors have been the inspiring theme of investigation by Israel Pedrosa, a Brazilian artist, who has devoted his life to creative painting, exploiting the chemical and physical effects associated with light, especially those generated in the light refraction domain. In this article, by focusing on the electronic spectra of phthalocyanines and gold nanoparticles, we discuss how such effects can influence the spectroscopic measurements, leading to inexistent bands and transitions.
Resumo:
The potentialities of X-ray Absorption Near Edge Spectroscopy (XANES) of the N K edge (N K) obtained with the spherical grating monochromator beam line at the Brazilian National Synchrotron Light Laboratory are explored in the investigation of poly(aniline), nanocomposites and dyes. Through the analysis of N K XANES spectra of conducting polymers and many other dye compounds that are dominated by 1s®p* transitions, it was possible to correlate the band energy value with the nitrogen oxidation states. An extensive N K XANES spectral database was obtained, thus permitting the elucidation of the nature of different nitrogens present in the intercalated conducting polymers.
Resumo:
An undergraduate organic lab experiment is described based on the preparation of two readily accessible hydrazones. The UV-visible spectra of these N-H acids and of their conjugate bases are employed to illustrate the importance of through-conjugation in determining their acid strength and their internal charge-transfer-band transitions.
Resumo:
The principal techniques for the synthesis of liquid crystalline block copolymers are reviewed. The syntheses are done by living/controlled free radical chain polymerization. The copolymers display an amorphous continuous phase and a discontinuous liquid crystalline phase (LC). The presence of oxypropylenic segments disturbs the range of mesophase transitions at lower temperatures. This behavior is not observed when styrenic segments are employed and suggests that the liquid crystalline behavior can be modified in block copolymers to show mesophases at higher and lower temperatures according to the flexibility of the chain segment that is present.
Resumo:
Iodine vapor is a very suitable substance to learn about molecular energy levels and transitions, and to introduce spectroscopic techniques. As a diatomic molecule its spectra are relatively simple and allow straightforward treatment of the data leading to the potential energy curves and to quantum mechanics concepts. The overtone bands, in the resonance Raman scattering, and the band progressions, in the electronic spectra, play an important role in the calculation of the Morse potential curves for the fundamental and excited electronic state. A weaker chemical bond in the electronic excited state, compared to the fundamental state, is evidenced by the increase in the equilibrium interatomic distance. The resonance Raman scattering of I2 is highlighted due to its importance for obtaining the anharmonicity constant in the fundamental electronic state.
Resumo:
Rare earth ion doped solid state materials are the most important active media of near-infrared and visible lasers and other photonic devices. In these ions, the occurrence of Excited State Absorptions (ESA), from long lived electronic levels, is commonplace. Since ESA can deeply affect the efficiencies of the rare earth emissions, evaluation of these transitions cross sections is of greatest importance in predicting the potential applications of a given material. In this paper a detailed description of the pump-probe technique for ESA measurements is presented, with a review of several examples of applications in Nd3+, Tm3+ and Er3+ doped materials.
Resumo:
The thermally stimulated depolarization current (TSDC) in a range of temperature from 84 to 373 K, has been applied to study the depolarization current of polyethylene and polyethylene composites in form of film and filled with commercial or oxidative surface treatment carbon black. The diagrams of TSDC obtained show that the composite in which the carbon black had received oxidative surface treatment reducing on an average depolarization current intensity in a magnitude order if compared to the composite with commercial carbon black. Therefore in the area between α and β transitions the difference is accentuated by reaching a peak 55 times in a temperature of 240 K. The difference in results is explained in terms of molecular interactions neighboring of carbon black particles.
Resumo:
An LC-MS/MS method has been developed for the determination of efavirenz (EFZ) in human plasma using hydrochlorothiazide as internal standard (I.S.). An ESI negative mode with multiple reaction-monitoring was used monitoring the transitions m/z 313.88→69.24 (EFZ) and 296.02→204.76 (I.S.). Samples were extracted using liquid-liquid extraction. The total run time was 2.0 min. The separation was achieved with HPLC-RP using a monolithic column. The assay was linear in the concentration range of 100 - 5000 ng mL-1. The mean recovery was 83%. Intra- and inter-day precision were < 9.5% and < 8.9%, respectively and accuracy was in the range ± 8.33%. The method was successfully applied to a bioequivalence study.
Resumo:
The aggregation behavior of the non-ionic surfactant Renex-100 in aqueous solutions and mesophases was evaluated by SAXS in a wide range of concentrations, between 20 and 30 °C. Complementary, water interactions were defined by DSC curves around 0°C. SAXS showed that the system undergoes the following phase transitions, from diluted to concentrated aqueous solutions: 1) isotropic solution of Renex aggregates; 2) hexagonal mesophase; 3) lamellar mesophase; and 4) isotropic solution. DSC analysis indicated the presence of interfacial water above 70wt%, which agreed with the segregation of free water to form the structural mesophases observed by SAXS bellow this concentration.
Resumo:
The purpose of this study was to develop a rapid, simple and sensitive quantitation method for pseudoephedrine (PSE), paracetamol (PAR) and loratadine (LOR) in plasma and pharmaceuticals using liquid chromatography-tandem mass spectrometry with a monolithic column. Separation was achieved using a gradient composition of methanol-0.1% formic acid at a flow rate of 1.0 mL min-1. Mass spectral transitions were recorded in SRM mode. System validation was evaluated for precision, specificity and linearity. Limit of detection for pseudoephedrine, paracetamol, and loratadine were determined to be 3.14, 1.86 and 1.44 ng mL-1, respectively, allowing easy determination in plasma with % recovery of 93.12 to 101.56%.