70 resultados para Activation ovocytaire
Resumo:
We have undertaken a comparative immunephenotypic study of spleen cells from hepatosplenic patients (HS) and uninfected individuals (NOR) using flow cytometry. Our data did not show any significant differences in the mean percentage of T-cells and B-cells between the two groups. Analysis of activated T-cells demonstrated that HS present an increased percentage of CD3+HLA-DR+ splenocytes in comparison to NOR. Analysis of T-cell subsets demonstrated a significant increase on the percentage of both activated CD4+ T-splenocytes and CD8+ cells in HS. We did not find any difference in the mean percentage of CD28+ T-cells. Analysis of the B-cell compartment did not show any difference on the percentage of B1-splenocytes. However, the spleen seems to be an important reservoir/source for B1 lymphocytes during hepatosplenic disease, since after splenectomy we found a decreased the percentage of circulating B1-lymphocytes. We observed an increase on the percentage of CD2+CD3- lymphocytes in the spleen of HS suggesting that the loss of CD3 by activated T-cells or the expansion of NK-cells might play a role in the development/maintenance of splenomegaly.
Resumo:
This paper reports the overall effects of three lectins, extracted from Canavalia brasiliensis, Dioclea violacea, and D. grandiflora, on BALB/c mice popliteal draining lymph nodes. These lectins have presented high stimulatory capacity on lymph node T cells. Additionally, they were able to induce apoptosis and inflammation (frequently associated with high endothelial venule necrosis). The data presented here suggest that the Diocleinae lectins studied can stimulate in vivo T cell activation and apoptosis, as well as present important side effects.
Resumo:
The phenotypic features acquired subsequent to antigen-specific stimulation in vitro were evaluated by means of the kinetic expressions of CD69 and CD25 activation molecules on T lymphocytes and assayed by flow cytometry in response to PPD, Ag85B, and ferritin in PPD-positive healthy control individuals. In response to PHA, CD69 staining on both CD4+ and CD8+ T cells became initially marked after 4 h, peaked at 24 h, and quickly decreased after 120 h. For CD25, a latter expression was detected around 8 h, having increased after 96 h. As expected, the response rate to the mycobacterial antigens was much lower than that to the mitogen. Positive staining was high after 96 h for CD25 and after 24 h for CD69. CD69 expression was significantly enhanced (p < 0.05) on CD8+ as compared to CD4+ T cells. High levels were also found between 96-120 h. Regarding Ag85B, CD25+ cells were mostly CD4+ instead of CD8+ T cells. Moreover, in response to ferritin, a lower CD25 expression was noted. The present data will allow further characterization of the immune response to new mycobacterial-specific antigens and their evaluation for possible inclusion in developing new diagnostic techniques for tuberculosis as well in a new vaccine to prevent the disease.
Resumo:
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.
Resumo:
Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.
Resumo:
The innate and adaptive immune responses of dendritic cells (DCs) to enteroinvasive Escherichia coli (EIEC) infection were compared with DC responses to Shigella flexneri infection. EIEC triggered DCs to produce interleukin (IL)-10, IL-12 and tumour necrosis factor (TNF)-α, whereas S. flexneri induced only the production of TNF-α. Unlike S. flexneri, EIEC strongly increased the expression of toll like receptor (TLR)-4 and TLR-5 in DCs and diminished the expression of co-stimulatory molecules that may cooperate to inhibit CD4+ T-lymphocyte proliferation. The inflammation elicited by EIEC seems to be related to innate immunity both because of the aforementioned results and because only EIEC were able to stimulate DC transmigration across polarised Caco-2 cell monolayers, a mechanism likely to be associated with the secretion of CC chemokine ligands (CCL)20 and TNF-α. Understanding intestinal DC biology is critical to unravelling the infection strategies of EIEC and may aid in the design of treatments for infectious diseases.
Resumo:
Human immunodeficiency virus (HIV)-1 infection has an important impact on malaria. Plasmodium falciparum and HIV-1 co-infected patients (Pf/HIV) present with a high degree of anaemia, enhanced parasitaemia and decreased CD4+ T cell counts, which increase the risk of developing severe malaria. In addition, infection with either Pf or HIV-1 alone causes extensive immune activation. Our hypothesis was that lymphocyte activation is potentiated in Pf/HIV co-infected patients, consequently worsening their immunosuppressed state. To test this hypothesis, 22 Pf/HIV patients, 34 malaria patients, 29 HIV/AIDS patients and 10 healthy controls without malaria or HIV/acquired immune deficiency syndrome (AIDS) from Maputo/Mozambique were recruited for this study. As expected, anaemia was most prevalent in the Pf/HIV group. A significant variation in parasite density was observed in the Pf/HIV co-infected group (110-75,000 parasites/µL), although the median values were similar to those of the malaria only patients. The CD4+ T cell counts were significantly lower in the Pf/HIV group than in the HIV/AIDS only or malaria only patients. Lymphocyte activation was evaluated by the percentage of activation-associated molecules [CD38 expression on CD8+ and human leukocyte antigen-DR expression on CD3+ T cells]. The highest CD38 expression was detected in the Pf/HIV co-infected patients (median = 78.2%). The malaria only (median = 50%) and HIV/AIDS only (median = 52%) patients also exhibited elevated levels of these molecules, although the values were lower than those of the Pf/HIV co-infected cases. Our findings suggest that enhanced T-cell activation in co-infected patients can worsen the immune response to both diseases.
Resumo:
Fuller's earth and acid activated smectitic clays are largely used as bleaching earth for the industrial processing of vegetable, animal and mineral oils and waxes. The paper comments about the nomenclature used for these materials, the nature of the acid activation of smectitic clays (bentonites), activation laboratory procedures and presents a review of the acid activation of bentonites from 20 deposits from several regions of Brazil. The activated clays were tested and show good decolorizing power for soybean, castor, cottonseed, corn and sunflower oils.
Resumo:
This work investigated the effect of microwave irradiation (MW) on the ethanolysis rate of soybean and sunflower oils catalyzed by supported Novozyme 435 (Candida antarctica). The effects of tert-butanol, water addition and oil:ethanol molar ratio on transesterification were evaluated under conventional heating (CH), and under optimum reaction conditions (with no added water in the system, 10% tert-butanol and 3:1 ethanol-to-oil molar ratio). The reactions were monitored up to 24 h to determine the conditions of initial reaction velocity. The investigated variables under MW (50 W) were: reaction time (5.0-180 min) and mode of reactor operation (fixed power, dynamic and cycles) in the absence and presence of tert-butanol (10% (w/w). The measured response was the reaction conversion in ethyl esters, which was linked to the enzyme catalytic activity. The results indicated that the use of microwave improved the activity at fixed power mode. A positive effect of the association of tert-butanol and MW irradiation on the catalytic activity was observed. The reaction rate improved in the order of approximately 1.5 fold compared to that under CH with soybean oil. Using soybean oil, the enzymatic transesterification under MW for conversion to FAEE (fatty acid ethyl esters) reached >99% in 3h, while with the use of CH the conversions were about 57% under similar conditions.
Resumo:
PURPOSE: To examine the expression of AKT and PTEN in a series of HER2-positive primary invasive breast tumors using immunohistochemistry, and to associate these expression profiles with classic pathologic features such as tumor grade, hormone receptor expression, lymphatic vascular invasion, and proliferation.METHODS: A total of 104 HER2-positive breast carcinoma specimens were prepared in tissue microarrays blocks for immunohistochemical detection of PTEN and phosphorylated AKT (pAKT). Original histologic sections were reviewed to assess pathological features, including HER2 status and Ki-67 index values. The associations between categorical and numeric variables were identified using Pearson's chi-square test and the Mann-Whitney, respectively.RESULTS: Co-expression of pAKT and PTEN was presented in 59 (56.7%) cases. Reduced levels of PTEN expression were detected in 20 (19.2%) cases, and these 20 tumors had a lower Ki-67 index value. In contrast, tumors positive for pAKT expression [71 (68.3%)] were associated with a higher Ki-67 index value.CONCLUSION: A role for AKT in the proliferation of HER2-positive breast cancers was confirmed. However, immunohistochemical detection of PTEN expression did not correlate with an inhibition of cellular proliferation or control of AKT phosphorylation, suggesting other pathways in these mechanisms of control.
Resumo:
This study was conducted to investigate the activation ability of the platelet-rich plasma (PRP) by pharmacological agents, as well as to verify the need or not of this activation for therapeutic use. The PRP was obtained from four healthy crossbred geldings aged 13 to 16 years (15±1years), and was processed for observation and quantification of the platelet morphology by using the transmission electron microscopy. All PRP samples were activated with 10% calcium chloride (CaCl2) solution, pure bovine thrombin or associated with CaCl2. The control (pure PRP) was not pharmacologically activated. In the pure PRP samples, 49% of the platelets were classified as state of activation uncertain, 41% as resting, 9% as fully activated and 1% as irreversibly damaged. Treatment with 10% CaCl2 provided a distribution of 54% platelets in state of activation uncertain, 24% as fully activated, 20% as resting, and 2% as irreversibly damaged. The platelet morphology of the bovine thrombin treated samples did not fit into classification adopted, as showing irregular shape with emission of large filamentous pseudopods, appearance of ruptured and whole granules in the remaining cytoplasm and extracellular environment. There was effect of the treatment on the platelet morphology (P=0.03). The 10% CaCl2 is an adequate platelet-activating agent. However, in cases the use of PRP under its liquid form is necessary, the use of pure PRP is recommended, since besides presenting an adequate percentage of fully activated platelets it also has significant amount of the resting type, which can be activated by substances found in the injured tissue.
Resumo:
The increasing use of nanotechnologies in advanced therapies has allowed the observation of specific adverse reactions related to nanostructures. The toxicity of a novel liposome formulation of meglumine antimoniate in dogs with visceral leishmaniasis after single dose has been investigated. Groups of 12 animals received by the intravenous route a single dose of liposomal meglumine antimoniate (group I [GI], 6.5 mg Sb/kg), empty liposomes (GII) or isotonic saline (GIII). Evaluation of hematological and biochemical parameters showed no significant changes 4 days after administration. No undesired effects were registered in the GIII. However, adverse reactions were observed in 67.7% of dogs from both groups that received liposomal formulations. The side effects began moments after bolus administration and disappeared during the first 15 minutes after treatment. Prostation, sialorrhea and defecation were the most frequent clinical signs, registered in 33.3% and 41.6 % of animals from the groups GI and GII, respectively. Tachypnea, mydriasis, miosis, vomiting and cyanosis were also registered in both groups. The adverse reactions observed in this study were attributed to the activation of the complement system by lipid vesicles in a phenomenon known as Complement Activation-Related Pseudoallergy (CARPA). The influence of the physical-chemical characteristics of liposomal formulation in the triggering of CARPA is discussed.
Resumo:
Intracellular substances released into the medium during rehydration of dry yeast cells can significantly improve the quality of a synthetic medium. Acceleration of yeast growth in this medium and increased yield of biomass are observed simultaneously. The change in the molecular arrangement of intracellular membranes as a result of the strong dehydration of live organisms is a negative phenomenon that reduces the level of cell viability. However, this phenomenon also represents an adaptive mechanism which facilitates the maintenance of population viability as a whole under extreme environmental conditions
Resumo:
It has been shown for several DNA probes that the recently introduced Fast-FISH (fluorescence in situ hybridization) technique is well suited for quantitative microscopy. For highly repetitive DNA probes the hybridization (renaturation) time and the number of subsequent washing steps were reduced considerably by omitting denaturing chemical agents (e.g., formamide). The appropriate hybridization temperature and time allow a clear discrimination between major and minor binding sites by quantitative fluorescence microscopy. The well-defined physical conditions for hybridization permit automatization of the procedure, e.g., by a programmable thermal cycler. Here, we present optimized conditions for a commercially available X-specific a-satellite probe. Highly fluorescent major binding sites were obtained for 74oC hybridization temperature and 60 min hybridization time. They were clearly discriminated from some low fluorescent minor binding sites on metaphase chromosomes as well as in interphase cell nuclei. On average, a total of 3.43 ± 1.59 binding sites were measured in metaphase spreads, and 2.69 ± 1.00 in interphase nuclei. Microwave activation for denaturation and hybridization was tested to accelerate the procedure. The slides with the target material and the hybridization buffer were placed in a standard microwave oven. After denaturation for 20 s at 900 W, hybridization was performed for 4 min at 90 W. The suitability of a microwave oven for Fast-FISH was confirmed by the application to a chromosome 1-specific a-satellite probe. In this case, denaturation was performed at 630 W for 60 s and hybridization at 90 W for 5 min. In all cases, the results were analyzed quantitatively and compared to the results obtained by Fast-FISH. The major binding sites were clearly discriminated by their brightness