325 resultados para Inibição de corrosão de aço carbono
Resumo:
Fuels and biofuels have a major importance in the transportation sector of any country, contributing to their economic development. The utilization of these fuels implies their closer contact to metallic materials, which comprise vehicle, storage, and transportation systems. Thus, metallic corrosion could be related to fuels and biofuels utilization. Specially, the corrosion associated to gasoline, ethanol, diesel, biodiesel, and their mixtures is discussed in this article. Briefly, the ethanol is the most corrosive and gasoline the least. Few investigations about the effect of biodiesel indicate that the corrosion is associated to their unsaturation degree and the corrosion of diesel is related to its acidity.
Resumo:
Polyurethane/multi-walled carbon nanotube (MWCNT) nanocomposites have been prepared with nanotube concentrations between 0.01 wt% and 1 wt%. MWCNT as-synthesized samples with ~74 nm diameter and ~7 μm length were introduced by solution processing in the polyurethane matrix. Scanning electron microscopy (SEM) images demonstrated good dispersion and adhesion of the CNTs to the polymeric matrix. The C=O stretching band showed evidence of perturbation of the hydrogen interaction between urethanic moieties in the nanocomposites as compared to pure TPU. Differential scanning calorimetry and positron anihilation lifetime spectroscopy measurements allowed the detection of glass transition displacement with carbon nanotube addition. Furthermore, the electrical conductivity of the nanocomposites was significantly increased with the addition of CNT.
Resumo:
Decomposition of carbon tetrachloride in a DC thermal plasma reactor was investigated in argon atmosphere. The operational parameters such as plasma torch power and argon flow rate versus CCl4 conversion were examined. The CCl4 net degradation was determined by GC-FID, the chlorine produced was quantified by iodometric titration, the solid carbon was characterised by Raman spectroscopy and by BET analysis. The solid carbon collected inside de plasma reactor was submitted to solid/liquid extraction and the desorbed species were identified by GC-MS.
Resumo:
Different parameters of carbon ceramic electrodes (CCE) preparation, such as type of precursor, carbon material, catalyst amount, among others, significantly influence the morphological properties and consequently their electrochemical responses. This paper describes a 2³ factorial design (2 factors and 3 levels with central point replicates), which the factors analyzed were catalyst amount (HCl 12 mol L-1), graphite/precursor ratio, and precursor type (TEOS - tetraethoxysilane and MTMOS - methyltrimetoxysilane). The design resulted in a significant third order interaction for peak current values (Ipa) and a second order interaction for potential difference (ΔE), between thefactors studied, which could not be observed when using an univariated study.
Resumo:
In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al2O3 and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields.
Resumo:
The AIDS epidemy has spread out and led to the diversification on the research for new antiviral drugs. Natural products, especially those derived from plants, are well-recognized as excellent sources of new drugs. Several of them have inhibitory activity against HIV replication, and some have been already clinically tested, with favorable results. This review presents the biochemical basis of the viral cycle and the research up to date on the identification, determination of the mechanism of biological action together with the therapeutical potential of plants-derived natural products, in the inhibition of HIV.
Resumo:
The present manuscript shows the synthesis of nickel hydroxide supported in carbon (Ni(OH)2/C) as a alternative material for catalytic alcohol oxidation in alkaline medium. The Ni(OH)2/C was synthesized in different percentage using a sonic bath. No current densities variation during successive cyclic voltammetry experiments was observed. The Ni(OH)2/C electrodes exhibit a potent and persistent electrocatalytic activity towards the oxidation of different alcohols. In addition, alcohols electooxidation occurs in less positive potential compared with noble metal catalyst.
Resumo:
This work proposes a separation, recovery and reuse procedure of chemical residues with chromium. This residue was generated by the determination of oxidizable carbon in organic fertilizers samples. The Cr(VI) of the residue was reduced with ethanol and precipitated with NaOH. The Cr(OH)3 precipitate was separated and oxidized to dichromate ions with hydrogen peroxide. This solution was used another time in organic carbon determination. The uses of recycled dichromate solution were appropriated in four successive recycling. The accuracy was proven using potassium hydrogen phthalate and ten organic fertilizer samples. The organic carbon results, determined with recycled solutions, were similar the conventional solution.
Resumo:
The gravimetric and electrochemical tests are the most common techniques used in determining the corrosion rate. However, the use of electrochemical polarization is limited to electrolytes with sufficient conductivity for which Tafel curves are linear. In this study, we investigated a technique in which working microelectrodes of AISI 1020 steel were used to obtain the Tafel curves in diesel oil. The strategy was to reduce the electrode area and hence the ohmic drop. The diameter of the microelectrode was reduced to a value where the compensation of the Tafel curves became unnecessary. The results showed that for electrodes with diameters below 50 μm, the ohmic drop tends to a minimum and independent of the microelectrode diameter.
Resumo:
Mn, Zn, Fe, Cd, Pb and Hg were determined in Zn-C and alkaline batteries manufactured along almost 20 years. After samples disassembly the electroactive components were treated with aqua regia in bath ice for 24 h. Metals were analyzed by ICP-OES. Zn and Mn amounts did not vary significantly. Fe amount decreased, specially after 2000. Hg, Cd and Pb amounts dramatically decreased along time, being virtually absent in alkaline batteries manufactured after 2005. Pb still remains in Zn-C samples. Scanning electron microscopy of batteries manufactured in 1997 and 1998 showed the presence of Bi, In and Cr in the plastic/paper anode-cathode separator.
Resumo:
A factorial design applied in a voltammetric stripping method for the measurement of Ag(I) in natural water is described. The procedure is based on the effective pre-concentration of silver ions on electrode surface. The calibration graph was linear in the silver concentration range from 7.92 x 10"7 to 1.07 x 10"5 mol L"1 with a detection limit of 3.81 x 10-7 mol L-1. The determination of Ag(I) in natural water samples was carried out satisfactory with the proposed electrode.
Resumo:
In this paper it is proposed an indirect method to evaluate the corrosion rate of an aluminum and zinc alloy in alkaline solution by using a well-known device for collecting gases over water. The hydrogen gas formation, a corrosion product, is monitored at different time intervals and associated with the alloy mass loss. It has been suggested that the students should work in groups, which may make feasible the social interaction among them and that results discussion may be done collectively under a professor orientation. This proposal may propitiate the learning of terminology and involved concepts as well as contribute to a better understanding of corrosion phenomena that occur in their everyday life.
Resumo:
In this work one proposes a didactic experience to simulate atmospheric corrosion of copper and nickel, due to sulfur dioxide presence. This is an opportunity to understand some basic aspects of atmospheric corrosion, by using fundamental concepts in chemistry, reactions of extraction and characterization of pollutants, as well as their participation in corrosion process. This subject opens a space for discussion about necessity of pollutant gases emissions control for preservation of materials and the environment.
Resumo:
In this work the production of synthesis gas from a mixture of methane (CH4) and carbon dioxide (CO2) by thermal plasma was studied. The best relation found for the gas mixture [CO2]/[CH4] was 1.3. Under the excess of CH4 in the gas mixture soot was formed and also benzene, indene and naphthalene were identified. The disulfides compounds in the gas mixture were degraded causing no interference in the synthesis gas production, suggesting no needs of pretreatment step for sulfurorganic compounds removal in the process
Resumo:
This work has compared the surfaces of two different steel samples used as orthopedical implants, classified as ASTM F138 and ISO5832-9, through optical emission spectroscopy, by means of SEM and EDS. The samples (implants) were also submitted to potentiodynamic cyclic polarization in Ringer lactate and NaCl 0.9 M L-1 solutions; ISO5832-9 sample did not show any kind of localized corrosion, but in the case of F138 steel was observed a pit localized corrosion in both solutions. In Ringer lactate solution it was observed a loss of about 63% for nickel and 26% for iron for F138 stell, compared to the initial composition.