223 resultados para ALKALINE CELLULASES
Resumo:
An efficient synthesis of the marine metabolite 3-bromoverongiaquinol (1) and the first total synthesis of 5-monobromocavernicolin (2), both isolated from the marine sponge Aplysina cavernicola, have been described based on the 1,2 addition of the lithium enolate of N,O-bistrimethylsilylacetamide (BSA, 4) to 1,4-benzoquinone (3). Bromination and purification of the crude product on silica gel chromatography provided 3-bromoverongiaquinol (1) in 50% overall yield. Under alkaline conditions, the crude product of the bromination reaction was converted to 5-monobromocavernicolin (2) in 20% yield which was also obtained in 13% yield (25% yield based on recovered starting material) from 3-bromoverongiaquinol (1).
Resumo:
The sulphur take an essential role in plants and it is one of the main nutrients in several metabolic processes. The dry ash oxidation, using alkaline oxidizers agent, is the simplest and most economical form for the oxidation of Organic S to sulfate in plants. The objective of this work is to propose a method for sulfur determination in plants samples using dry ash oxidation and agent oxidizers alkaline. The quantification of S-SO4(2-) in samples was accomplished by turbidimetric method. The results demonstrated that the proposed method for oxidation alkaline was appropriate.
Resumo:
Mn, Zn, Fe, Cd, Pb and Hg were determined in Zn-C and alkaline batteries manufactured along almost 20 years. After samples disassembly the electroactive components were treated with aqua regia in bath ice for 24 h. Metals were analyzed by ICP-OES. Zn and Mn amounts did not vary significantly. Fe amount decreased, specially after 2000. Hg, Cd and Pb amounts dramatically decreased along time, being virtually absent in alkaline batteries manufactured after 2005. Pb still remains in Zn-C samples. Scanning electron microscopy of batteries manufactured in 1997 and 1998 showed the presence of Bi, In and Cr in the plastic/paper anode-cathode separator.
Resumo:
A rapid and low cost method to determine Cr(VI) in soils based upon alkaline metal extraction at room temperature is proposed as a semi-quantitative procedure to be performed in the field. A color comparison with standards with contents of Cr(VI) in the range of 10 to 150 mg kg-1 was used throughout. For the different types of soils studied, more than 75% of the fortified soluble Cr(VI) were recovered for all levels of spike tested for both the proposed and standard methods. Recoveries of 83 and 99% were obtained for the proposed and the standard methods, respectively, taking into account the analysis of a heavily contaminated soil sample.
Resumo:
In this paper it is proposed an indirect method to evaluate the corrosion rate of an aluminum and zinc alloy in alkaline solution by using a well-known device for collecting gases over water. The hydrogen gas formation, a corrosion product, is monitored at different time intervals and associated with the alloy mass loss. It has been suggested that the students should work in groups, which may make feasible the social interaction among them and that results discussion may be done collectively under a professor orientation. This proposal may propitiate the learning of terminology and involved concepts as well as contribute to a better understanding of corrosion phenomena that occur in their everyday life.
Resumo:
The discoloration and degradation of the textile dye RED GRLX-220 using the electrochemically generated ozone was investigated. Total discoloration was rapidly achieved in both acid and basic conditions. A pseudo-first order kinetics was observed for discoloration, influenced by pH and ozonation time. A considerable degree of mineralization (60%) was obtained after 30 min of ozonation in alkaline medium. The feasibility of organic matter oxidation during the ozonation process increased in both acidic and alkaline media. The toxicity decreased after the ozonation process, suggesting that the byproducts are less toxic than the parental compound.
Resumo:
Spent alkaline and Zn-C batteries were placed in seawater, rainwater or landfill leachate at room temperature for up 30 days in order to simulate natural weathering. After the experiments pH and electrical conductivity of the liquid were measured. The precipitate formed and the filtrate were submitted to metal analysis by ICP-OES. Seawater is the most corrosive medium, followed by landfill leachate. Pb, Cd and Hg were mainly in the filtrate. Fe, Mn and Zn were generally dominant in the precipitate. Na and K account for the electrical conductivity and are good indicators of the corrosion stage of the batteries.
Resumo:
Developing mesoporosity in HZSM-5 zeolites is an alternative for improving their catalytic performance on chemical reactions. In this work, alkaline and thermal treatments were used to produce mesoporosity. These treatments increased mesoporous area and volume. They also influenced the acid properties of the samples. Concerning catalytic performance, treatments modified reaction product distribution. Whereas alkaline treatment favored formation of olefins and increased propene ratio in the beginning of the reaction, thermal treatment resulted in formation of only ethylene due to the low acidity of the sample.
Resumo:
This paper describes a five-week mini-project for a general chemistry laboratory course. Activities are included preparations of ethanol and sucrose solutions, calculation of concentrations, determination of densities with densimeters, sugarcane juice fermentation with CO2 capture in alkaline solution, distillation, and determination of amounts of ethanol and CO2 formed. Abilities and concepts normally present in practical general chemistry courses are covered: use of balances, volumetric glassware and densimeters, preparation of solutions, performing of dilutions, determination of solution densities, observation of chemical reactions, stoichiometric calculations, separation of mixtures, and titration.
Resumo:
The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose) and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.
Resumo:
A multi-commuted flow system was developed to determine propylthiouracil (PTU) based on the reaction of its thiol form with iminoquinone radical generated by the oxidation of N,N-dimethyl-p-phenylenediamine in an alkaline medium. PTU can be found in tautomeric forms and the tautomeric equilibrium was displaced to enhance the thiol form. However, the reaction product is unstable and its residence time in the flow path was carefully investigated. The proposed procedure showed good precision (< 1.5%) and a limit of detection (3s) of 0.11 mg L-1. High recoveries were obtained in the validation test. The procedure was employed for propylthiouracil determination in medications.
Resumo:
This work describes the synthesis of hydrogels of cellulose acetate (AC) crosslinked with 1,2,4,5-benzenotetracarboxylic dianhydride (PMDA). The crosslinking reaction was monitored by FTIR. Analysis of aromatic fragments from the alkaline hydrolysis of the gels by UV spectroscopy indicated that an increase in the stoichiometric ratio of dianhydride resulted in higher degrees of crosslinking. The non-porous nature of the gels was confirmed by analysis of nitrogen adsorption. Water absorption isotherms showed that as the temperature and degree of crosslinking increased, the percentage of water absorbed at equilibrium (%Seq) also increased. The hydrogels presented second order swelling kinetics.
Resumo:
We evaluated the effect of thermal drying (60 to 75 ºC and times from 0 to 12.58 h) and alkaline treatment (Ca(OH)2 and CaO at doses from 8 to 10%.) on the microbiological and chemical characteristics of biosolids from the Cañaveralejo WWTP. The results showed that in thermal drying all temperatures studied were sufficient to achieve the sanitation of biosolids. In the alkaline treatment the two types of lime showed the total elimination of fecal coliforms, E. coli and helminth eggs, however, the process of alkalization of biosolids had significant influences on organic carbon and calcium.
Resumo:
A potentiometric Nickel sensor was prepared using 2-hydroxy-1-naphthylidene-N-cyanoacetohydrazone as electro-active material and epoxy resin as a binding material. A membrane composed of 40% Schiff's base and 60% epoxy resin exhibited the best performance. The membrane showed excellent response in the concentration range of 0.15 ppm to 0.1 mol L- 1 Ni+2 ions with non-Nernstian slope of 22.0 mV/decade, had a rapid response time (less than 10 s), and can be used for three months without any considerable loss of potential. The sensor was useful within the pH range of 1.3 to 9.6, and was able to discriminate between Ni2+ and a large number of alkaline earth and transition metal ions. The practical utility of the sensor has been demonstrated by using it successfully as an indicator electrode in the potentiometric titration of Ni2+ with EDTA and oxalic acid.
Resumo:
An improved method based on reverse flow injection is proposed for determining sulfate concentration in the wet-process of phosphoric acid (WPA). The effect of reagent composition, flow rate, temperature, acid concentration, length of the reaction coil, and linear response range on the flow system is discussed in detail. Optimal conditions are established for determining sulfate in the WPA samples. Baseline drift is avoided by a periodic washing step with EDTA in an alkaline medium. A linear response is observed within a range of 20 - 360 mg L-1, given by the equation A = 0.0020C (mg L-1) + 0.0300, R² = 0.9991. The detection limit of the proposed method for sulfate analysis is 3 mg L-1, and the relative standard deviation (n = 12) of sulfate absorbance peak is less than 1.60%. This method has a rate of up to 29 samples per hour, and the results compare well with those obtained with gravimetric method.