23 resultados para digital commons
em Digital Commons at Florida International University
Resumo:
The Digital Commons Annual Report is a document that interested parties may use as a means of monitoring the yearly progress of Florida International University Libraries’ institutional repository. The report includes download and page hit statistics for all collections held in FIU Digital Commons.
Resumo:
The Digital Commons Annual Report is a document that interested parties may use as a means of monitoring the yearly progress of Florida International University Libraries’ institutional repository. The report includes download and page hit statistics for all collections held in FIU Digital Commons.
Resumo:
The Digital Commons Annual Report is a document that interested parties may use as a means of monitoring the yearly progress of Florida International University Libraries’ institutional repository. The report includes download and page hit statistics for all collections held in FIU Digital Commons.
A Digital Collection Center's Experience: ETD Discovery, Promotion, and Workflows in Digital Commons
Resumo:
This presentation was given at the Digital Commons Southeastern User Group conference at Winthrop University, South Carolina on June 5, 2015. The presentation discusses how the digital collections center (DCC) at Florida International University uses Digital Commons as their tool for ingesting, editing, tracking, and publishing university theses and dissertations. The basic DCC workflow is covered as well as institutional repository promotion.
Resumo:
This research pursued the conceptualization, implementation, and verification of a system that enhances digital information displayed on an LCD panel to users with visual refractive errors. The target user groups for this system are individuals who have moderate to severe visual aberrations for which conventional means of compensation, such as glasses or contact lenses, does not improve their vision. This research is based on a priori knowledge of the user's visual aberration, as measured by a wavefront analyzer. With this information it is possible to generate images that, when displayed to this user, will counteract his/her visual aberration. The method described in this dissertation advances the development of techniques for providing such compensation by integrating spatial information in the image as a means to eliminate some of the shortcomings inherent in using display devices such as monitors or LCD panels. Additionally, physiological considerations are discussed and integrated into the method for providing said compensation. In order to provide a realistic sense of the performance of the methods described, they were tested by mathematical simulation in software, as well as by using a single-lens high resolution CCD camera that models an aberrated eye, and finally with human subjects having various forms of visual aberrations. Experiments were conducted on these systems and the data collected from these experiments was evaluated using statistical analysis. The experimental results revealed that the pre-compensation method resulted in a statistically significant improvement in vision for all of the systems. Although significant, the improvement was not as large as expected for the human subject tests. Further analysis suggest that even under the controlled conditions employed for testing with human subjects, the characterization of the eye may be changing. This would require real-time monitoring of relevant variables (e.g. pupil diameter) and continuous adjustment in the pre-compensation process to yield maximum viewing enhancement.
Resumo:
Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.
Resumo:
Today, most conventional surveillance networks are based on analog system, which has a lot of constraints like manpower and high-bandwidth requirements. It becomes the barrier for today's surveillance network development. This dissertation describes a digital surveillance network architecture based on the H.264 coding/decoding (CODEC) System-on-a-Chip (SoC) platform. The proposed digital surveillance network architecture includes three major layers: software layer, hardware layer, and the network layer. The following outlines the contributions to the proposed digital surveillance network architecture. (1) We implement an object recognition system and an object categorization system on the software layer by applying several Digital Image Processing (DIP) algorithms. (2) For better compression ratio and higher video quality transfer, we implement two new modules on the hardware layer of the H.264 CODEC core, i.e., the background elimination module and the Directional Discrete Cosine Transform (DDCT) module. (3) Furthermore, we introduce a Digital Signal Processor (DSP) sub-system on the main bus of H.264 SoC platforms as the major hardware support system for our software architecture. Thus we combine the software and hardware platforms to be an intelligent surveillance node. Lab results show that the proposed surveillance node can dramatically save the network resources like bandwidth and storage capacity.
Resumo:
This paper offers an overview of existing definitions and theoretical frameworks for digital literacy. The researcher makes recommendations for an agreed upon definition and theoretical framework and discusses implications for a relationship between digital and visual literacy skills.
Resumo:
Digital Initiatives is the newsletter of FIU Libraries’ Digital Collections and Institutional Repository (IR). This biannual newsletter serves as a resource for FIU students and faculty to keep up-to-date with the latest projects, collections, and services available from the FIU Digital Collections Center.
Resumo:
Presentation made by Jamie Rogers and John Nemmers at the Society of Florida Archivists annual meeting in Tallahassee, Florida. Jamie Rogers presented the "Coral Gables - Virtual Historic City" project at Florida International University. John Nemmers presented the "Unearthing St. Augustine’s Colonial Heritage" project at the University of Florida
Resumo:
Academic dishonesty threatens the integrity of collegiate education and undermines institutional objectives. Nonetheless, many students willingly compromise academic integrity for higher grades and reduced stress levels. This literature review examines why students engage in academic dishonesty and addresses preventive measures and developing technologies.
Resumo:
This paper makes a case for a direct relationship between digital literacy and nonlinear thinking styles, articulates a demand for nonlinear thinking styles in education and the workplace, and states implications for a connection between nonlinear thinking styles visual literacy, and intuitive artistic practice.
Resumo:
Digital Initiatives is the newsletter of FIU Libraries’ Digital Collections and Institutional Repository (IR). This biannual newsletter serves as a resource for FIU students and faculty to keep up-to-date with the latest projects, collections, and services available from the FIU Libraries.
Resumo:
Communication has become an essential function in our civilization. With the increasing demand for communication channels, it is now necessary to find ways to optimize the use of their bandwidth. One way to achieve this is by transforming the information before it is transmitted. This transformation can be performed by several techniques. One of the newest of these techniques is the use of wavelets. Wavelet transformation refers to the act of breaking down a signal into components called details and trends by using small waveforms that have a zero average in the time domain. After this transformation the data can be compressed by discarding the details, transmitting the trends. In the receiving end, the trends are used to reconstruct the image. In this work, the wavelet used for the transformation of an image will be selected from a library of available bases. The accuracy of the reconstruction, after the details are discarded, is dependent on the wavelets chosen from the wavelet basis library. The system developed in this thesis takes a 2-D image and decomposes it using a wavelet bank. A digital signal processor is used to achieve near real-time performance in this transformation task. A contribution of this thesis project is the development of DSP-based test bed for the future development of new real-time wavelet transformation algorithms.