3 resultados para Ativação policlonal
em Universidade Federal de Uberlândia
Resumo:
Chemical modification of polymer matrices is an alternative way to change its surface properties. The introduction of sulfonic acid groups in polymer matrices alter properties such as adhesion, wettability, biocampatibility, catalytic activity, among others. This paper describes the preparation of polymeric solid acid based on the chemical modification of poly (1-fenietileno) (PS) and Poly (1-chloroethylene) (PVC) by the introduction of sulfonic acid groups and the application of these polymers as catalysts in the esterification reaction of oleic acid with methanol. The modified materials were characterized by Infrared Spectroscopy, Elemental Analysis and titration acid-base of the acid groups. All techniques confirmed the chemical changes and the presence of sulfur associated with sulfonic acid groups or sulfates. The modified polymers excellent performance in the esterification reaction of oleic acid with methanol a degree of conversion higher than 90% for all investigated polymers (modified PS and PVC (5% w / w)), with a mass ratio of oleic acid: methanol 1:10 to 100 ° C. The best performance was observed for the modified PVC catalyst (PVCS) which showed low degree of swelling during the reactions is recovered by filtration different from that observed for polystyrene sulfonate (PSS). Given these facts, the PVCS was employed as a catalyst in the esterification reaction of oleic acid in different times and different temperatures to obtain the kinetic parameters of the reaction. Experimental data show a great fit for pseudo-homogeneous model of second order and activation energy value of 41.12 kJ mol -1, below that found in the literature for the uncatalyzed reaction, 68.65 kJ mol -1 .The PVCS exhibits good catalytic activity for 3 times of reuse, with a slight decrease in the third cycle, but with a conversion of about 78%. The results show that solid polymeric acid has good chemical stability for the application in esterification reaction of commercial importance with possible application in the biodiesel production. The advantages in use of this system are the increased reaction rate at about 150 times, at these test conditions, the replacement of sulfuric acid as a catalyst for this being the most corrosive and the possibility of reuse of the polymer for several cycles.
Resumo:
Introduction: The production of KPC (Klebsiella pneumoniae carbapenemase) has become an important mechanism of carbapenem-resistance among Enterobacteriaceae strains. In Brazil, KPC is already widespread and its incidence has increased significantly, reducing treatment options. The “perfect storm” combination of the absence of new drug developmentand the emergence of multidrug-resistant strains resulted in the need for the use of older drugs, with greater toxicity, such as polymyxins. Aims: To determine the occurrence of carbapenemase-producing strains in carbapenem-resistant Enterobacteriaceae isolated from patients with nosocomial infection/colonization during September/2014 to August/2015, to determine the risk factors associated with 30-day- mortality and the impact of inappropriate therapy. Materials and Methods: We performed a case control study to assess the risk factors (comorbidities, invasive procedures and inappropriate antimicrobial therapy) associated with 30-day-mortality, considering the first episode of infection in 111 patients. The resistance genes blaKPC, blaIMP, blaVIM and blaNDM-1 were detected by polymerase chain reaction technique. Molecular typing of the strains involved in the outbreak was performed by pulsed field gel electrophoresis technique. The polymyxin resistance was confirmed by the microdilution broth method. Results: 188 episodes of carbapenem-resistant Enterobacteriaceae infections/colonizations were detected; of these, 122 strains were recovered from the hospital laboratory. The presence of blaKPC gene were confirmed in the majority (74.59%) of these isolates. It was not found the presence of blaIMP , blaVIM and blaNDM-1 genes. K. pneumoniae was the most frequent microorganism (77,13%), primarily responsible for urinary tract infections (21,38%) and infections from patients of the Intensive Care Unit (ICU) (61,38%). Multivariate statistical analysis showed as predictors independently associated with mortality: dialysis and bloodstream infection. The Kaplan-Meier curve showed a lower probability of survival in the group of patients receiving antibiotic therapy inappropriately. Antimicrobial use in adult ICU varied during the study period, but positive correlation between increased incidence of strains and the consumption was not observed. In May and July 2015, the occurrence rates of carbapenem-resistant Enterobacteriaceae KPC-producing per 1000 patient-days were higher than the control limit established, confirming two outbreaks, the first caused by colistin-susceptible KPC-producing K. pneumoniae isolates, with a polyclonal profile and the second by a dominant clone of colistin-resistant (≥ 32 μg/mL) KPC-producing K. pneumoniae. The cross transmission between patients became clear by the temporal and spatial relationships observed in the second outbreak, since some patients occupied the same bed, showing problems in hand hygiene adherence among healthcare workers and inadequate terminal disinfection of environment. The outbreak was contained when the ICU was closed to new admissions. Conclusions: The study showed an endemicity of K. pneumoniae KPC-producing in adult ICU, progressing to an epidemic monoclonal expansion, resulted by a very high antibiotic consumption of carbapenems and polymyxins and facilitated by failures in control measures the unit.
Resumo:
Neospora caninum is an obligate intracellular parasite classified in the phylum Apicomplexa, characterized by the presence of the apical complex composed by micronemes proteins, rhoptries and dense granules, used by parasite during the adhesion and invasion process of the host cell. This is the mean event in infection pathogenesis generated by N. caninum and other parasites from the phylum Apicomplexa, promoting influence in the parasite biology and the interface between the parasite and its host. Therefore, molecular tools have been developed in order to identify and characterize these possible virulence factors. Thus, the present study sought to establish a specific system of genetic manipulation of N. caninum, searching for the improvement of the genetics manipulation of this parasite. So, we developed genetically depleted N. caninum to Rop9 rhoptry using the pU6-Universal CRISPR-Cas9 plasmid of T. gondii modified by the insertion of Ku80. The Rop9 depleted parasite showed important during initial phase of invasion and replication of the parasite, however it was not characterized as a potential virulence fator for N. caninum. Furthermore, T. gondii proteins were expressed in N. caninum by the use of specific vectors for this parasite, showing an heterologous system for the study of Toxoplasma proteins, due to the fact that Gra15 or Gra24 of type II T. gondii and Rop16 of type I T. gondii were expressed in N. caninum tachyzoites in a stable way and keept its biological phenotype, as already presented the former parasite, that naturaly expresses these proteins. In addition, it was observed that N. caninum induced an inflammasome activation through NLRP3, ASC and Caspase-1. IL-1R/MyD88 demonstrated an indirect pathway in the control of parasite replication. Furthermore, it was observed that this activation is dependent of the potassium efflux and that different strains of N. caninum keep this activation profile. However, T. gondii strains block this activation, making necessary a prior signal in order to active the inflamosome pathway. Type I T. gondii Rop16 was identified as responsible for blocking this activation, in a dependent way to the STAT3 activation. Therefore, the development of molecular tools and their application in N. caninum may prove to be useful to identify and characterize virulent factors involved in the pathogenesis by these two protozoans.