6 resultados para Convex programming
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
It is often assumed (for analytical convenience, but also in accordance with common intuition) that consumer preferences are convex. In this paper, we consider circumstances under which such preferences are (or are not) optimal. In particular, we investigate a setting in which goods possess some hidden quality with known distribution, and the consumer chooses a bundle of goods that maximizes the probability that he receives some threshold level of this quality. We show that if the threshold is small relative to consumption levels, preferences will tend to be convex; whereas the opposite holds if the threshold is large. Our theory helps explain a broad spectrum of economic behavior (including, in particular, certain common commercial advertising strategies), suggesting that sensitivity to information about thresholds is deeply rooted in human psychology.
Resumo:
We generalize exactness to games with non-transferable utility (NTU). A game is exact if for each coalition there is a core allocation on the boundary of its payoff set. Convex games with transferable utility are well-known to be exact. We consider ve generalizations of convexity in the NTU setting. We show that each of ordinal, coalition merge, individual merge and marginal convexity can be uni¯ed under NTU exactness. We provide an example of a cardinally convex game which is not NTU exact. Finally, we relate the classes of Π-balanced, totally Π-balanced, NTU exact, totally NTU exact, ordinally convex, cardinally convex, coalition merge convex, individual merge convex and marginal convex games to one another.
Resumo:
In this note we present a cardinally convex game (Sharkey, 1981) with empty core. Sharkey assumes that V (N) is convex, we do not do so, hence we do not contradict Sharkey's result.
Resumo:
We present a general model to find the best allocation of a limited amount of supplements (extra minutes added to a timetable in order to reduce delays) on a set of interfering railway lines. By the best allocation, we mean the solution under which the weighted sum of expected delays is minimal. Our aim is to finely adjust an already existing and well-functioning timetable. We model this inherently stochastic optimization problem by using two-stage recourse models from stochastic programming, building upon earlier research from the literature. We present an improved formulation, allowing for an efficient solution using a standard algorithm for recourse models. We show that our model may be solved using any of the following theoretical frameworks: linear programming, stochastic programming and convex non-linear programming, and present a comparison of these approaches based on a real-life case study. Finally, we introduce stochastic dependency into the model, and present a statistical technique to estimate the model parameters from empirical data.
Resumo:
This paper introduces the theory of algorithm visualization and its education-related results obtained so far, then an algorithm visualization tool is going to be presented as an example, which we will finally evaluate. This article illustrates furthermore how algorithm visualization tools can be used by teachers and students during the teaching and learning process of programming, and equally evaluates teaching and learning methods. Two tools will be introduced: Jeliot and TRAKLA2.