13 resultados para CONVEX HYPERSURFACES
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
It is often assumed (for analytical convenience, but also in accordance with common intuition) that consumer preferences are convex. In this paper, we consider circumstances under which such preferences are (or are not) optimal. In particular, we investigate a setting in which goods possess some hidden quality with known distribution, and the consumer chooses a bundle of goods that maximizes the probability that he receives some threshold level of this quality. We show that if the threshold is small relative to consumption levels, preferences will tend to be convex; whereas the opposite holds if the threshold is large. Our theory helps explain a broad spectrum of economic behavior (including, in particular, certain common commercial advertising strategies), suggesting that sensitivity to information about thresholds is deeply rooted in human psychology.
Resumo:
We generalize exactness to games with non-transferable utility (NTU). A game is exact if for each coalition there is a core allocation on the boundary of its payoff set. Convex games with transferable utility are well-known to be exact. We consider ve generalizations of convexity in the NTU setting. We show that each of ordinal, coalition merge, individual merge and marginal convexity can be uni¯ed under NTU exactness. We provide an example of a cardinally convex game which is not NTU exact. Finally, we relate the classes of Π-balanced, totally Π-balanced, NTU exact, totally NTU exact, ordinally convex, cardinally convex, coalition merge convex, individual merge convex and marginal convex games to one another.
Resumo:
In this note we present a cardinally convex game (Sharkey, 1981) with empty core. Sharkey assumes that V (N) is convex, we do not do so, hence we do not contradict Sharkey's result.
Resumo:
A cikkben a kooperatív játékelmélet fogalmait alkalmazzuk egy ellátási lánc esetében. Az ostorcsapás-hatás elemeit egy beszállító-termelő ellátási láncban ragadjuk meg egy Arrow-Karlin típusú modellben lineáris készletezési és konvex termelési költség mellett. Feltételezzük, hogy mindkét vállalat minimalizálja a fontosabb költségeit. Két működési rendszert hasonlítunk össze: egy hierarchikus döntéshozatali rendszert, amikor először a termelő, majd a beszállító optimalizálja helyzetét, majd egy centralizált (kooperatív) modellt, amikor a vállalatok az együttes költségüket minimalizálják. A kérdés úgy merül fel, hogy a csökkentett ostorcsapás-hatás esetén hogyan osszák meg a részvevők ebben a transzferálható hasznosságú kooperatív játékban. = In this paper we apply cooperative game theory concepts to analyze supply chains. The bullwhip effect in a two-stage supply chain (supplier-manufacturer) in the framework of the Arrow-Karlin model with linear-convex cost functions is considered. It is assumed that both firms minimize their relevant costs, and two cases are examined: the supplier and the manufacturer minimize their relevant costs in a decentralized and in a centralized (cooperative) way. The question of how to share the savings of the decreased bullwhip effect in the centralized (cooperative) model is answered by transferable utility cooperative game theory tools.
Resumo:
The converse statement of the Filippov-Wazewski relaxation theorem is proven, more precisely, two differential inclusions have the same closure of their solution sets if and only if the right-hand sides have the same convex hull. The idea of the proof is examining the contingent derivatives to the attainable sets.
Resumo:
We introduce the concept of a TUU-game, a transferable utility game with uncertainty. In a TUU-game there is uncertainty regarding the payoffs of coalitions. One out of a finite number of states of nature materializes and conditional on the state, the players are involved in a particular transferable utility game. We consider the case without ex ante commitment possibilities and propose the Weak Sequential Core as a solution concept. We characterize the Weak Sequential Core and show that it is non-empty if all ex post TUgames are convex.
Resumo:
We introduce the concept of a TUU-game, a transferableutilitygame with uncertainty. In a TUU-game there is uncertainty regarding the payoffs of coalitions. One out of a finite number of states of nature materializes and conditional on the state, the players are involved in a particular transferableutilitygame. We consider the case without ex ante commitment possibilities and propose the Weak Sequential Core as a solution concept. We characterize the Weak Sequential Core and show that it is non-empty if all ex post TU-games are convex.
Resumo:
The aim of the paper is to present a new global optimization method for determining all the optima of the Least Squares Method (LSM) problem of pairwise comparison matrices. Such matrices are used, e.g., in the Analytic Hierarchy Process (AHP). Unlike some other distance minimizing methods, LSM is usually hard to solve because of the corresponding nonlinear and non-convex objective function. It is found that the optimization problem can be reduced to solve a system of polynomial equations. Homotopy method is applied which is an efficient technique for solving nonlinear systems. The paper ends by two numerical example having multiple global and local minima.
Resumo:
This paper adds to the growing literature on endogenous timing of decisions in duopolies. We show for a price-setting duopoly game with sufficiently asymmetric and strictly convex cost functions that the less efficient firm moves first while the more efficient moves second with a higher price than the less efficient firm.
Resumo:
We consider von Neumann -- Morgenstern stable sets in assignment games with one seller and many buyers. We prove that a set of imputations is a stable set if and only if it is the graph of a certain type of continuous and monotone function. This characterization enables us to interpret the standards of behavior encompassed by the various stable sets as possible outcomes of well-known auction procedures when groups of buyers may form bidder rings. We also show that the union of all stable sets can be described as the union of convex polytopes all of whose vertices are marginal contribution payoff vectors. Consequently, each stable set is contained in the Weber set. The Shapley value, however, typically falls outside the union of all stable sets.
Resumo:
Permutation games are totally balanced transferable utility cooperative games arising from certain sequencing and re-assignment optimization problems. It is known that for permutation games the bargaining set and the core coincide, consequently, the kernel is a subset of the core. We prove that for permutation games the kernel is contained in the least core, even if the latter is a lower dimensional subset of the core. By means of a 5-player permutation game we demonstrate that, in sense of the lexicographic center procedure leading to the nucleolus, this inclusion result can not be strengthened. Our 5-player permutation game is also an example (of minimum size) for a game with a non-convex kernel.
Resumo:
A dolgozatban a döntéselméletben fontos szerepet játszó páros összehasonlítás mátrix prioritásvektorának meghatározására új megközelítést alkalmazunk. Az A páros összehasonlítás mátrix és a prioritásvektor által definiált B konzisztens mátrix közötti eltérést a Kullback-Leibler relatív entrópia-függvény segítségével mérjük. Ezen eltérés minimalizálása teljesen kitöltött mátrix esetében konvex programozási feladathoz vezet, nem teljesen kitöltött mátrix esetében pedig egy fixpont problémához. Az eltérésfüggvényt minimalizáló prioritásvektor egyben azzal a tulajdonsággal is rendelkezik, hogy az A mátrix elemeinek összege és a B mátrix elemeinek összege közötti különbség éppen az eltérésfüggvény minimumának az n-szerese, ahol n a feladat mérete. Így az eltérésfüggvény minimumának értéke két szempontból is lehet alkalmas az A mátrix inkonzisztenciájának a mérésére. _____ In this paper we apply a new approach for determining a priority vector for the pairwise comparison matrix which plays an important role in Decision Theory. The divergence between the pairwise comparison matrix A and the consistent matrix B defined by the priority vector is measured with the help of the Kullback-Leibler relative entropy function. The minimization of this divergence leads to a convex program in case of a complete matrix, leads to a fixed-point problem in case of an incomplete matrix. The priority vector minimizing the divergence also has the property that the difference of the sums of elements of the matrix A and the matrix B is n times the minimum of the divergence function where n is the dimension of the problem. Thus we developed two reasons for considering the value of the minimum of the divergence as a measure of inconsistency of the matrix A.
Resumo:
We present a general model to find the best allocation of a limited amount of supplements (extra minutes added to a timetable in order to reduce delays) on a set of interfering railway lines. By the best allocation, we mean the solution under which the weighted sum of expected delays is minimal. Our aim is to finely adjust an already existing and well-functioning timetable. We model this inherently stochastic optimization problem by using two-stage recourse models from stochastic programming, building upon earlier research from the literature. We present an improved formulation, allowing for an efficient solution using a standard algorithm for recourse models. We show that our model may be solved using any of the following theoretical frameworks: linear programming, stochastic programming and convex non-linear programming, and present a comparison of these approaches based on a real-life case study. Finally, we introduce stochastic dependency into the model, and present a statistical technique to estimate the model parameters from empirical data.