55 resultados para semigroup of bounded linear operators
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2000 Mathematics Subject Classification: Primary 47A20, 47A45; Secondary 47A48.
Resumo:
2000 Mathematics Subject Classification: Primary 47B47, 47B10; Secondary 47A30.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
We give the necessary and sufficient conditions for the extendability of ternary linear codes of dimension k ≥ 5 with minimum distance d ≡ 1 or 2 (mod 3) from a geometrical point of view.
Resumo:
We study the continuity of pseudo-differential operators on Bessel potential spaces Hs|p (Rn ), and on the corresponding Besov spaces B^(s,q)p (R ^n). The modulus of continuity ω we use is assumed to satisfy j≥0, ∑ [ω(2−j )Ω(2j )]2 < ∞ where Ω is a suitable positive function.
Resumo:
Mathematics Subject Classification: 26A33, 33E12, 33C20.
Resumo:
2000 Mathematics Subject Classification: 44A35; 42A75; 47A16, 47L10, 47L80
Resumo:
2000 Math. Subject Classification: 30C45
Resumo:
Toric coordinates and toric vector field have been introduced in [2]. Let A be an arbitrary vector field. We obtain formulae for the divA, rotA and the Laplace operator in toric coordinates.
Resumo:
Илинка А. Димитрова - Полугрупата Tn от всички пълни преобразувания върху едно n-елементно множество е изучавана в различни аспекти ог редица автори. Обект на разглеждане в настоящата работа е полугрупата Incn състояща се от всички нарастващи пълни преобразувания. Очевидно Incn е подполугрупа на Tn. Доказано е, че всеки елемент на полугрупата Incn от ранг r може да се представи като произведение на идемпотенти от същия ранг и всеки идемпотент от ранг по-малък или равен на r може да се представи като произведение на идемпотенти от ранг r. С помощта на тези твърдения е показано, че полугрупата Incn се поражда от множеството на всички идемпотенти от ранг n − 1 и тъждественото преобразувание. Освен това е доказано, че идемпотентите от ранг n − 1 са неразложими в полугрупата Incn. В резултат на това е получено, че рангът и идемпотичниат ранг на разглежданата полугрупа са равни. Като са използвани тези твърдения е направена пълна класификация на маскималните подполугрупи на полугрупата Incn.
Resumo:
Илинка А. Димитрова, Цветелина Н. Младенова - Моноида P Tn от всички частични преобразования върху едно n-елементно множество относно операцията композиция на преобразования е изучаван в различни аспекти от редица автори. Едно частично преобразование α се нарича запазващо наредбата, ако от x ≤ y следва, че xα ≤ yα за всяко x, y от дефиниционното множество на α. Обект на разглеждане в настоящата работа е моноида P On състоящ се от всички частични запазващи наредбата преобразования. Очевидно P On е под-моноид на P Tn. Направена е пълна класификация на максималните подполугрупи на моноида P On. Доказано е, че съществуват пет различни вида максимални подполугрупи на разглеждания моноид. Броят на всички максимални подполугрупи на POn е точно 2^n + 2n − 2.
Resumo:
Dedicated to the memory of S.M. Dodunekov (1945–2012)Abstract. Geometric puncturing is a method to construct new codes. ACM Computing Classification System (1998): E.4.
Resumo:
AMS subject classification: 90C05, 90A14.
Resumo:
2000 Mathematics Subject Classification: 60G18, 60E07