6 resultados para learning and diversity

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is presented a research on the application of a collaborative learning and authoring during all delivery phases of e-learning programmes or e-courses offered by educational institutions. The possibilities for modelling of an e-project as a specific management process based on planned, dynamically changing or accidentally arising sequences of learning activities, is discussed. New approaches for project-based and collaborative learning and authoring are presented. Special types of test questions are introduced which allow test generation and authoring based on learners’ answers accumulated in the frame of given e-course. Experiments are carried out in an e-learning environment, named BEST.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The report presents a description of the most popular digital folklore archives in the world. Specifications for designing and developing web-based social-oriented applications in the field of education and cultural tourism are formulated on the basis of comparative analysis. A project for structuring and categorizing the content is presented. A website for accessing the digital folklore archive is designed and implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to be analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham’s razor non-plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016