15 resultados para STOCHASTIC OPTIMAL CONTROL
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2000 Mathematics Subject Classi cation: 49L60, 60J60, 93E20.
Resumo:
In the present paper the problems of the optimal control of systems when constraints are imposed on the control is considered. The optimality conditions are given in the form of Pontryagin’s maximum principle. The obtained piecewise linear function is approximated by using feedforward neural network. A numerical example is given.
Resumo:
In this paper, we are concerned with the optimal control boundary control of a second order parabolic heat equation. Using the results in [Evtushenko, 1997] and spatial central finite difference with diagonally implicit Runge-Kutta method (DIRK) is applied to solve the parabolic heat equation. The conjugate gradient method (CGM) is applied to solve the distributed control problem. Numerical results are reported.
Resumo:
In this paper, we are considered with the optimal control of a schrodinger equation. Based on the formulation for the variation of the cost functional, a gradient-type optimization technique utilizing the finite difference method is then developed to solve the constrained optimization problem. Finally, a numerical example is given and the results show that the method of solution is robust.
Resumo:
AMS Subj. Classification: 49J15, 49M15
Resumo:
Цветомир Цачев - В настоящия доклад се прави преглед на някои резултати от областта на оптималното управление на непрекъснатите хетерогенни системи, публикувани в периодичната научна литература в последните години. Една динамична система се нарича хетерогенна, ако всеки от нейните елементи има собствена динамиката. Тук разглеждаме оптимално управление на системи, чиято хетерогенност се описва с едномерен или двумерен параметър – на всяка стойност на параметъра отговаря съответен елемент на системата. Хетерогенните динамични системи се използват за моделиране на процеси в икономиката, епидемиологията, биологията, опазване на обществената сигурност (ограничаване на използването на наркотици) и др. Тук разглеждаме модел на оптимално инвестиране в образование на макроикономическо ниво [11], на ограничаване на последствията от разпространението на СПИН [9], на пазар на права за въглеродни емисии [3, 4] и на оптимален макроикономически растеж при повишаване на нивото на върховите технологии [1]. Ключови думи: оптимално управление, непрекъснати хетерогенни динамични системи, приложения в икономиката и епидемиолегията
Resumo:
2000 Mathematics Subject Classification: 49L20, 60J60, 93E20
Resumo:
2000 Mathematics Subject Classification: 62H15, 62P10.
Resumo:
Representation of neural networks by dynamical systems is considered. The method of training of neural networks with the help of the theory of optimal control is offered.
Resumo:
Йордан Йорданов, Андрей Василев - В работата се изследват методи за решаването на задачи на оптималното управление в дискретно време с безкраен хоризонт и явни управления. Дадена е обосновка на една процедура за решаване на такива задачи, базирана на множители на Лагранж, коята често се употребява в икономическата литература. Извеждени са необходимите условия за оптималност на базата на уравнения на Белман и са приведени достатъчни условия за оптималност при допускания, които често се използват в икономиката.
Resumo:
2000 Mathematics Subject Classification: 37F21, 70H20, 37L40, 37C40, 91G80, 93E20.
Resumo:
* This research was supported by a grant from the Greek Ministry of Industry and Technology.
Resumo:
AMS subject classification: 90C31, 90A09, 49K15, 49L20.
Resumo:
The paper deals with a problem of intelligent system’s design for complex environments. There is discussed a possibility to integrate several technologies into one basic structure that could form a kernel of an autonomous intelligent robotic system. One alternative structure is proposed in order to form a basis of an intelligent system that would be able to operate in complex environments. The proposed structure is very flexible because of features that allow adapting via learning and adjustment of the used knowledge. Therefore, the proposed structure may be used in environments with stochastic features such as hardly predictable events or elements. The basic elements of the proposed structure have found their implementation in software system and experimental robotic system. The software system as well as the robotic system has been used for experimentation in order to validate the proposed structure - its functionality, flexibility and reliability. Both of them are presented in the paper. The basic features of each system are presented as well. The most important results of experiments are outlined and discussed at the end of the paper. Some possible directions of further research are also sketched at the end of the paper.
Resumo:
AMS subject classification: 93C95, 90A09.