65 resultados para Generalized fractional function
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Mathematics Subject Classification: 26A33, 33C20.
Resumo:
2000 Mathematics Subject Classification: Primary 46F25, 26A33; Secondary: 46G20
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C60, 44A20
Resumo:
Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.
Resumo:
A rough set approach for attribute reduction is an important research subject in data mining and machine learning. However, most attribute reduction methods are performed on a complete decision system table. In this paper, we propose methods for attribute reduction in static incomplete decision systems and dynamic incomplete decision systems with dynamically-increasing and decreasing conditional attributes. Our methods use generalized discernibility matrix and function in tolerance-based rough sets.
Resumo:
We introduce a modification of the familiar cut function by replacing the linear part in its definition by a polynomial of degree p + 1 obtaining thus a sigmoid function called generalized cut function of degree p + 1 (GCFP). We then study the uniform approximation of the (GCFP) by smooth sigmoid functions such as the logistic and the shifted logistic functions. The limiting case of the interval-valued Heaviside step function is also discussed which imposes the use of Hausdorff metric. Numerical examples are presented using CAS MATHEMATICA.
Resumo:
2000 Mathematics Subject Classification: 33C60, 33C20, 44A15
Resumo:
2000 Mathematics Subject Classification: Primary 26A33, 30C45; Secondary 33A35
Resumo:
Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.
Resumo:
Dedicated to 75th birthday of Prof. A.M. Mathai, Mathematical Subject Classification 2010:26A33, 33C10, 33C20, 33C50, 33C60, 26A09
Resumo:
2000 Mathematics Subject Classification: 15A29.
Resumo:
Mathematics Subject Classification: 26A33, 33E12, 33C20.
Resumo:
A generalized convolution with a weight function for the Fourier cosine and sine transforms is introduced. Its properties and applications to solving a system of integral equations are considered.
Resumo:
Mathematics Subject Classification: 33E12, 33FXX PACS (Physics Abstracts Classification Scheme): 02.30.Gp, 02.60.Gf
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C20