34 resultados para Generalized Functions
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
MSC 2010: 26A33, 46Fxx, 58C05 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo
Resumo:
2000 Mathematics Subject Classification: Primary 46F25, 26A33; Secondary: 46G20
Resumo:
MSC 2010: 46F30, 46F10
Resumo:
∗ Partially supported by grant No. 433/94 NSF of the Ministry of Education and Science of the Republic of Bulgaria 1991 Mathematics Subject Classification:30C45
Resumo:
Mathematics Subject Classification: 30B10, 30B30; 33C10, 33C20
Resumo:
Mathematics Subject Classification: 33C05, 33C10, 33C20, 33C60, 33E12, 33E20, 40A30
Resumo:
Mathematics Subject Classification: 33D60, 33D90, 26A33
Resumo:
Mathematics Subject Classification: 33C60, 33C20, 44A15
Resumo:
Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.
Resumo:
In non-linear random effects some attention has been very recently devoted to the analysis ofsuitable transformation of the response variables separately (Taylor 1996) or not (Oberg and Davidian 2000) from the transformations of the covariates and, as far as we know, no investigation has been carried out on the choice of link function in such models. In our study we consider the use of a random effect model when a parameterized family of links (Aranda-Ordaz 1981, Prentice 1996, Pregibon 1980, Stukel 1988 and Czado 1997) is introduced. We point out the advantages and the drawbacks associated with the choice of this data-driven kind of modeling. Difficulties in the interpretation of regression parameters, and therefore in understanding the influence of covariates, as well as problems related to loss of efficiency of estimates and overfitting, are discussed. A case study on radiotherapy usage in breast cancer treatment is discussed.
Resumo:
We introduce a modification of the familiar cut function by replacing the linear part in its definition by a polynomial of degree p + 1 obtaining thus a sigmoid function called generalized cut function of degree p + 1 (GCFP). We then study the uniform approximation of the (GCFP) by smooth sigmoid functions such as the logistic and the shifted logistic functions. The limiting case of the interval-valued Heaviside step function is also discussed which imposes the use of Hausdorff metric. Numerical examples are presented using CAS MATHEMATICA.
Resumo:
MSC2010: 30C45, 33C45
Resumo:
In this paper we examine discrete functions that depend on their variables in a particular way, namely the H-functions. The results obtained in this work make the “construction” of these functions possible. H-functions are generalized, as well as their matrix representation by Latin hypercubes.
Resumo:
First order characterizations of pseudoconvex functions are investigated in terms of generalized directional derivatives. A connection with the invexity is analysed. Well-known first order characterizations of the solution sets of pseudolinear programs are generalized to the case of pseudoconvex programs. The concepts of pseudoconvexity and invexity do not depend on a single definition of the generalized directional derivative.
Resumo:
The aim of this paper is to study a generalized form of elliptic-type integrals which unify and extend various families of elliptic-type integrals studied recently by several authors. In a recent communication [1] we have obtained recurrence relations and asymptotic formula for this generalized elliptic-type integral. Here we shall obtain some more results which are single and multiple integral formulae, differentiation formula, fractional integral and approximations for this class of generalized elliptic-type integrals.